MR Brain Image Classification: A Comparative Study on Machine Learning Methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/17950 |
Resumo: | The brain tissue classification from magnetic resonance images provides valuable insight in neurological research study. A significant number of computational methods have been developed for pixel classification of magnetic resonance brain images. Here, we have shown a comparative study of various machine learning methods for this. The results of the classifiers are evaluated through prediction error analysis and several other performance measures. It is noticed from the results that the Support Vector Machine outperformed other classifiers. The superiority of the results is also established through statistical tests called Friedman test. |
id |
RCAP_b405e19ed34290f11916b7d3f205879c |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/17950 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
MR Brain Image Classification: A Comparative Study on Machine Learning MethodsMachine LearningStatistical Test.Multi-spectral Magnetic ResonanceImageSupervised ClassifiersThe brain tissue classification from magnetic resonance images provides valuable insight in neurological research study. A significant number of computational methods have been developed for pixel classification of magnetic resonance brain images. Here, we have shown a comparative study of various machine learning methods for this. The results of the classifiers are evaluated through prediction error analysis and several other performance measures. It is noticed from the results that the Support Vector Machine outperformed other classifiers. The superiority of the results is also established through statistical tests called Friedman test.ECT / Universidade de Évora2016-03-11T11:50:16Z2016-03-112014-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/17950http://hdl.handle.net/10174/17950porBhowmick, S., Saha I., Rato L., Bhattacharjee D., MR Brain Image Classification: A Comparative Study on Machine Learning Methods, Actas das 4 as Jornadas de Informática da Universidade de Évora, 2014ndndlmr@uevora.ptnd498Bhowmick, ShibSankarSaha, IndrajitRato, LuisBhattacharjee, Debotoshinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:05:45Zoai:dspace.uevora.pt:10174/17950Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:09:56.425738Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
MR Brain Image Classification: A Comparative Study on Machine Learning Methods |
title |
MR Brain Image Classification: A Comparative Study on Machine Learning Methods |
spellingShingle |
MR Brain Image Classification: A Comparative Study on Machine Learning Methods Bhowmick, ShibSankar Machine Learning Statistical Test. Multi-spectral Magnetic Resonance Image Supervised Classifiers |
title_short |
MR Brain Image Classification: A Comparative Study on Machine Learning Methods |
title_full |
MR Brain Image Classification: A Comparative Study on Machine Learning Methods |
title_fullStr |
MR Brain Image Classification: A Comparative Study on Machine Learning Methods |
title_full_unstemmed |
MR Brain Image Classification: A Comparative Study on Machine Learning Methods |
title_sort |
MR Brain Image Classification: A Comparative Study on Machine Learning Methods |
author |
Bhowmick, ShibSankar |
author_facet |
Bhowmick, ShibSankar Saha, Indrajit Rato, Luis Bhattacharjee, Debotosh |
author_role |
author |
author2 |
Saha, Indrajit Rato, Luis Bhattacharjee, Debotosh |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bhowmick, ShibSankar Saha, Indrajit Rato, Luis Bhattacharjee, Debotosh |
dc.subject.por.fl_str_mv |
Machine Learning Statistical Test. Multi-spectral Magnetic Resonance Image Supervised Classifiers |
topic |
Machine Learning Statistical Test. Multi-spectral Magnetic Resonance Image Supervised Classifiers |
description |
The brain tissue classification from magnetic resonance images provides valuable insight in neurological research study. A significant number of computational methods have been developed for pixel classification of magnetic resonance brain images. Here, we have shown a comparative study of various machine learning methods for this. The results of the classifiers are evaluated through prediction error analysis and several other performance measures. It is noticed from the results that the Support Vector Machine outperformed other classifiers. The superiority of the results is also established through statistical tests called Friedman test. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02-01T00:00:00Z 2016-03-11T11:50:16Z 2016-03-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/17950 http://hdl.handle.net/10174/17950 |
url |
http://hdl.handle.net/10174/17950 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Bhowmick, S., Saha I., Rato L., Bhattacharjee D., MR Brain Image Classification: A Comparative Study on Machine Learning Methods, Actas das 4 as Jornadas de Informática da Universidade de Évora, 2014 nd nd lmr@uevora.pt nd 498 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
ECT / Universidade de Évora |
publisher.none.fl_str_mv |
ECT / Universidade de Évora |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136581851807744 |