Evaluating Wi-Fi indoor positioning approaches in a real world environment

Detalhes bibliográficos
Autor(a) principal: Hantoush, Raafat
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/19782
Resumo: Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics
id RCAP_58603539bf6017303315c2a8cc2c9c2a
oai_identifier_str oai:run.unl.pt:10362/19782
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluating Wi-Fi indoor positioning approaches in a real world environmentWi-FiWorldIndoor positioning systemRSSIFingerprintRetail analyticsPredictive modelingData scienceInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsGlobal positioning system(GPS) does not provide generally a good positioning performance in an indoor location because of many reasons (Henniges, 2012). On the other hand, other alternatives such as the WI-FI technology has become recently in a popular use to provide indoor localization. And that is due to many reasons, such as the wide spread of WI-FI infrastructure in the indoor environments and the low cost of this technology. This study attempts to evaluate different WI-FI indoor positioning approaches in a real world environment. In particular, in retail stores and shopping malls. The pros and cons of each one of these approaches are pointed out. The main purpose of this study from the company perspective is to explore the state of the art methods and the cutting edge technologies of the WI-FI IPS and to come up with an improvement of their indoor localization system. This system forms the core of the company`s retail-analytics product that uses a Wi-Fi positioning technology to provide indoor location based services for the customers and helps retailers to better understanding their businesses.Vanneschi, LeonardoBrosig, FabianMüller, AlexanderRUNHantoush, Raafat2017-01-16T10:31:47Z2016-01-132016-01-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/19782TID:201357992enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:01:56Zoai:run.unl.pt:10362/19782Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:25:41.647755Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluating Wi-Fi indoor positioning approaches in a real world environment
title Evaluating Wi-Fi indoor positioning approaches in a real world environment
spellingShingle Evaluating Wi-Fi indoor positioning approaches in a real world environment
Hantoush, Raafat
Wi-Fi
World
Indoor positioning system
RSSI
Fingerprint
Retail analytics
Predictive modeling
Data science
title_short Evaluating Wi-Fi indoor positioning approaches in a real world environment
title_full Evaluating Wi-Fi indoor positioning approaches in a real world environment
title_fullStr Evaluating Wi-Fi indoor positioning approaches in a real world environment
title_full_unstemmed Evaluating Wi-Fi indoor positioning approaches in a real world environment
title_sort Evaluating Wi-Fi indoor positioning approaches in a real world environment
author Hantoush, Raafat
author_facet Hantoush, Raafat
author_role author
dc.contributor.none.fl_str_mv Vanneschi, Leonardo
Brosig, Fabian
Müller, Alexander
RUN
dc.contributor.author.fl_str_mv Hantoush, Raafat
dc.subject.por.fl_str_mv Wi-Fi
World
Indoor positioning system
RSSI
Fingerprint
Retail analytics
Predictive modeling
Data science
topic Wi-Fi
World
Indoor positioning system
RSSI
Fingerprint
Retail analytics
Predictive modeling
Data science
description Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics
publishDate 2016
dc.date.none.fl_str_mv 2016-01-13
2016-01-13T00:00:00Z
2017-01-16T10:31:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/19782
TID:201357992
url http://hdl.handle.net/10362/19782
identifier_str_mv TID:201357992
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137888039862273