Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/11011 |
Resumo: | In this paper we study a 2-parameter family of 2-periodic nonautonomous systems generated by the alternate iteration of two stunted tent maps. Using symbolic dynamics, renormalization and star product in the nonautonomous setting, we compute the convergence rates of sequences of parameters obtained through consecutive star products/renormalizations, extending in this way Feigenbaum's convergence rates. We also define sequences in the parameter space corresponding to anharmonic period doubling bifurcations and compute their convergence rates. In both cases we show that the convergence rates are independent of the initial point, concluding that the nonautonomous setting has universal properties of the type found by Feigenbaum in families of autonomous systems. |
id |
RCAP_5938189f062414ff58861f97ccf51dcb |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/11011 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent mapsNonautonomous periodic systemsRates of convergenceStunted tent mapsSymbolic dynamicsIn this paper we study a 2-parameter family of 2-periodic nonautonomous systems generated by the alternate iteration of two stunted tent maps. Using symbolic dynamics, renormalization and star product in the nonautonomous setting, we compute the convergence rates of sequences of parameters obtained through consecutive star products/renormalizations, extending in this way Feigenbaum's convergence rates. We also define sequences in the parameter space corresponding to anharmonic period doubling bifurcations and compute their convergence rates. In both cases we show that the convergence rates are independent of the initial point, concluding that the nonautonomous setting has universal properties of the type found by Feigenbaum in families of autonomous systems.ElsevierRCIPLMoura E Silva, TeresaSilva, LuisFernandes, Sara2020-01-21T11:58:30Z2020-022020-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/11011engSILVA, Teresa M.; SILVA, Luís; FERNANDES, Sara – Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps. Communications in Nonlinear Science and Numerical Simulation. ISSN 1007-5704. Vol. 81 (2020), pp. 1-151007-570410.1016/j.cnsns.2019.105007metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:01:44Zoai:repositorio.ipl.pt:10400.21/11011Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:19:21.012687Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps |
title |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps |
spellingShingle |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps Moura E Silva, Teresa Nonautonomous periodic systems Rates of convergence Stunted tent maps Symbolic dynamics |
title_short |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps |
title_full |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps |
title_fullStr |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps |
title_full_unstemmed |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps |
title_sort |
Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps |
author |
Moura E Silva, Teresa |
author_facet |
Moura E Silva, Teresa Silva, Luis Fernandes, Sara |
author_role |
author |
author2 |
Silva, Luis Fernandes, Sara |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Moura E Silva, Teresa Silva, Luis Fernandes, Sara |
dc.subject.por.fl_str_mv |
Nonautonomous periodic systems Rates of convergence Stunted tent maps Symbolic dynamics |
topic |
Nonautonomous periodic systems Rates of convergence Stunted tent maps Symbolic dynamics |
description |
In this paper we study a 2-parameter family of 2-periodic nonautonomous systems generated by the alternate iteration of two stunted tent maps. Using symbolic dynamics, renormalization and star product in the nonautonomous setting, we compute the convergence rates of sequences of parameters obtained through consecutive star products/renormalizations, extending in this way Feigenbaum's convergence rates. We also define sequences in the parameter space corresponding to anharmonic period doubling bifurcations and compute their convergence rates. In both cases we show that the convergence rates are independent of the initial point, concluding that the nonautonomous setting has universal properties of the type found by Feigenbaum in families of autonomous systems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-21T11:58:30Z 2020-02 2020-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/11011 |
url |
http://hdl.handle.net/10400.21/11011 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
SILVA, Teresa M.; SILVA, Luís; FERNANDES, Sara – Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps. Communications in Nonlinear Science and Numerical Simulation. ISSN 1007-5704. Vol. 81 (2020), pp. 1-15 1007-5704 10.1016/j.cnsns.2019.105007 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133459816382464 |