Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps

Detalhes bibliográficos
Autor(a) principal: Moura E Silva, Teresa
Data de Publicação: 2020
Outros Autores: Silva, Luis, Fernandes, Sara
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/11011
Resumo: In this paper we study a 2-parameter family of 2-periodic nonautonomous systems generated by the alternate iteration of two stunted tent maps. Using symbolic dynamics, renormalization and star product in the nonautonomous setting, we compute the convergence rates of sequences of parameters obtained through consecutive star products/renormalizations, extending in this way Feigenbaum's convergence rates. We also define sequences in the parameter space corresponding to anharmonic period doubling bifurcations and compute their convergence rates. In both cases we show that the convergence rates are independent of the initial point, concluding that the nonautonomous setting has universal properties of the type found by Feigenbaum in families of autonomous systems.
id RCAP_5938189f062414ff58861f97ccf51dcb
oai_identifier_str oai:repositorio.ipl.pt:10400.21/11011
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent mapsNonautonomous periodic systemsRates of convergenceStunted tent mapsSymbolic dynamicsIn this paper we study a 2-parameter family of 2-periodic nonautonomous systems generated by the alternate iteration of two stunted tent maps. Using symbolic dynamics, renormalization and star product in the nonautonomous setting, we compute the convergence rates of sequences of parameters obtained through consecutive star products/renormalizations, extending in this way Feigenbaum's convergence rates. We also define sequences in the parameter space corresponding to anharmonic period doubling bifurcations and compute their convergence rates. In both cases we show that the convergence rates are independent of the initial point, concluding that the nonautonomous setting has universal properties of the type found by Feigenbaum in families of autonomous systems.ElsevierRCIPLMoura E Silva, TeresaSilva, LuisFernandes, Sara2020-01-21T11:58:30Z2020-022020-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/11011engSILVA, Teresa M.; SILVA, Luís; FERNANDES, Sara – Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps. Communications in Nonlinear Science and Numerical Simulation. ISSN 1007-5704. Vol. 81 (2020), pp. 1-151007-570410.1016/j.cnsns.2019.105007metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:01:44Zoai:repositorio.ipl.pt:10400.21/11011Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:19:21.012687Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
title Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
spellingShingle Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
Moura E Silva, Teresa
Nonautonomous periodic systems
Rates of convergence
Stunted tent maps
Symbolic dynamics
title_short Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
title_full Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
title_fullStr Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
title_full_unstemmed Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
title_sort Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps
author Moura E Silva, Teresa
author_facet Moura E Silva, Teresa
Silva, Luis
Fernandes, Sara
author_role author
author2 Silva, Luis
Fernandes, Sara
author2_role author
author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Moura E Silva, Teresa
Silva, Luis
Fernandes, Sara
dc.subject.por.fl_str_mv Nonautonomous periodic systems
Rates of convergence
Stunted tent maps
Symbolic dynamics
topic Nonautonomous periodic systems
Rates of convergence
Stunted tent maps
Symbolic dynamics
description In this paper we study a 2-parameter family of 2-periodic nonautonomous systems generated by the alternate iteration of two stunted tent maps. Using symbolic dynamics, renormalization and star product in the nonautonomous setting, we compute the convergence rates of sequences of parameters obtained through consecutive star products/renormalizations, extending in this way Feigenbaum's convergence rates. We also define sequences in the parameter space corresponding to anharmonic period doubling bifurcations and compute their convergence rates. In both cases we show that the convergence rates are independent of the initial point, concluding that the nonautonomous setting has universal properties of the type found by Feigenbaum in families of autonomous systems.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-21T11:58:30Z
2020-02
2020-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/11011
url http://hdl.handle.net/10400.21/11011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv SILVA, Teresa M.; SILVA, Luís; FERNANDES, Sara – Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps. Communications in Nonlinear Science and Numerical Simulation. ISSN 1007-5704. Vol. 81 (2020), pp. 1-15
1007-5704
10.1016/j.cnsns.2019.105007
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133459816382464