Human-aware Collaborative Manipulation with Reaching Motion Prediction

Detalhes bibliográficos
Autor(a) principal: Fioravanço, Lucas Monteiro
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/125779
Resumo: This dissertations presents a possible approach to improve human-robot interaction in an industrial collaborative situation, where the human operator and a collaborative industrial robot work within a shared work-space. The approach presented in this dissertation focuses on a situation where part of the assembly process needs to be carried out by a human operator, whose assembly station is located on a work-bench, and a robot is used to pick and place products in specific locations on the operator’s work station. Because those locations can be accessed both by the robot or the human operator at any time, collisions can occur and should be avoided in order to make the process more natural for the human operator as well as to avoid the emergency stop of the collaborative robot which has to be restarted and thus decreases productivity. In order to prevent those collisions the proposed system defines key-areas in each of the locations as well as other relevant positions for the collaborative task. The system uses a Kinect Sensor and a neural network to track the user’s hand over time and Gaussian Mixture Models to make predictions regarding the possible destination key-area given the observed trajectory until that moment. If a collision is predicted the robot pauses the task being executed at the moment in order to prevent it and, once the conflict has been resolved, resumes operation.
id RCAP_59d97fd05e51a0fa52e4270a359f4294
oai_identifier_str oai:run.unl.pt:10362/125779
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Human-aware Collaborative Manipulation with Reaching Motion PredictionDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThis dissertations presents a possible approach to improve human-robot interaction in an industrial collaborative situation, where the human operator and a collaborative industrial robot work within a shared work-space. The approach presented in this dissertation focuses on a situation where part of the assembly process needs to be carried out by a human operator, whose assembly station is located on a work-bench, and a robot is used to pick and place products in specific locations on the operator’s work station. Because those locations can be accessed both by the robot or the human operator at any time, collisions can occur and should be avoided in order to make the process more natural for the human operator as well as to avoid the emergency stop of the collaborative robot which has to be restarted and thus decreases productivity. In order to prevent those collisions the proposed system defines key-areas in each of the locations as well as other relevant positions for the collaborative task. The system uses a Kinect Sensor and a neural network to track the user’s hand over time and Gaussian Mixture Models to make predictions regarding the possible destination key-area given the observed trajectory until that moment. If a collision is predicted the robot pauses the task being executed at the moment in order to prevent it and, once the conflict has been resolved, resumes operation.Esta dissertação apresenta uma possível aproximação para melhorar a interação humanorobot em situações industrias colaborativas, onde um operador humano e um robot industrial colaborativo trabalham num espaço partilhado. A aproximação apresentada nesta dissertação foca situações onde parte do processo de produção deve ser realizado por um operador humano cuja área de trabalho se localiza numa mesa. É utilizado um robot de forma a colocar e retirar produtos de locais especificos da mesa de trabalho do operador. Uma vez que estes locais podem ser acedidos pelo utilizador e pelo robot a qualquer momento é possivel que ocorram colisões que devem ser evitadas, de forma a tornar a interação mais natural para o humano e evitar paragens de emergencia, que requerem que o robot colaborativo seja reiniciado manualmente e, portanto, diminuem a produtividade. De forma a prevenir essas colisões, o sistema proposto define áreas-chave nos locais onde podem ocorrer colisões e em outras localisões relevantes para a tarefa colaborativa a ser executada. A solução proposta utiliza um sensor Kinect, juntamente com uma rede neuronal para seguir a mão do operador ao longo do tempo e usa Gaussian Mixture Models para fazer previsões relativas à área de destino dada a trajetoria observada até ao momento. Se for prevista uma colisão o robot interrompe a execução da tarefa programada de forma a evitar a colisão. Uma vez o conflito resolvido, o robot retoma a tarefa do ponto onde parou.Oliveira, JoséMarques, FranciscoRUNFioravanço, Lucas Monteiro2021-10-08T15:16:09Z2021-052021-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/125779enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:06:27Zoai:run.unl.pt:10362/125779Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:45:43.310783Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Human-aware Collaborative Manipulation with Reaching Motion Prediction
title Human-aware Collaborative Manipulation with Reaching Motion Prediction
spellingShingle Human-aware Collaborative Manipulation with Reaching Motion Prediction
Fioravanço, Lucas Monteiro
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Human-aware Collaborative Manipulation with Reaching Motion Prediction
title_full Human-aware Collaborative Manipulation with Reaching Motion Prediction
title_fullStr Human-aware Collaborative Manipulation with Reaching Motion Prediction
title_full_unstemmed Human-aware Collaborative Manipulation with Reaching Motion Prediction
title_sort Human-aware Collaborative Manipulation with Reaching Motion Prediction
author Fioravanço, Lucas Monteiro
author_facet Fioravanço, Lucas Monteiro
author_role author
dc.contributor.none.fl_str_mv Oliveira, José
Marques, Francisco
RUN
dc.contributor.author.fl_str_mv Fioravanço, Lucas Monteiro
dc.subject.por.fl_str_mv Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description This dissertations presents a possible approach to improve human-robot interaction in an industrial collaborative situation, where the human operator and a collaborative industrial robot work within a shared work-space. The approach presented in this dissertation focuses on a situation where part of the assembly process needs to be carried out by a human operator, whose assembly station is located on a work-bench, and a robot is used to pick and place products in specific locations on the operator’s work station. Because those locations can be accessed both by the robot or the human operator at any time, collisions can occur and should be avoided in order to make the process more natural for the human operator as well as to avoid the emergency stop of the collaborative robot which has to be restarted and thus decreases productivity. In order to prevent those collisions the proposed system defines key-areas in each of the locations as well as other relevant positions for the collaborative task. The system uses a Kinect Sensor and a neural network to track the user’s hand over time and Gaussian Mixture Models to make predictions regarding the possible destination key-area given the observed trajectory until that moment. If a collision is predicted the robot pauses the task being executed at the moment in order to prevent it and, once the conflict has been resolved, resumes operation.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-08T15:16:09Z
2021-05
2021-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/125779
url http://hdl.handle.net/10362/125779
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138062022737920