Human-aware Collaborative Manipulation with Reaching Motion Prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/125779 |
Resumo: | This dissertations presents a possible approach to improve human-robot interaction in an industrial collaborative situation, where the human operator and a collaborative industrial robot work within a shared work-space. The approach presented in this dissertation focuses on a situation where part of the assembly process needs to be carried out by a human operator, whose assembly station is located on a work-bench, and a robot is used to pick and place products in specific locations on the operator’s work station. Because those locations can be accessed both by the robot or the human operator at any time, collisions can occur and should be avoided in order to make the process more natural for the human operator as well as to avoid the emergency stop of the collaborative robot which has to be restarted and thus decreases productivity. In order to prevent those collisions the proposed system defines key-areas in each of the locations as well as other relevant positions for the collaborative task. The system uses a Kinect Sensor and a neural network to track the user’s hand over time and Gaussian Mixture Models to make predictions regarding the possible destination key-area given the observed trajectory until that moment. If a collision is predicted the robot pauses the task being executed at the moment in order to prevent it and, once the conflict has been resolved, resumes operation. |
id |
RCAP_59d97fd05e51a0fa52e4270a359f4294 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/125779 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Human-aware Collaborative Manipulation with Reaching Motion PredictionDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThis dissertations presents a possible approach to improve human-robot interaction in an industrial collaborative situation, where the human operator and a collaborative industrial robot work within a shared work-space. The approach presented in this dissertation focuses on a situation where part of the assembly process needs to be carried out by a human operator, whose assembly station is located on a work-bench, and a robot is used to pick and place products in specific locations on the operator’s work station. Because those locations can be accessed both by the robot or the human operator at any time, collisions can occur and should be avoided in order to make the process more natural for the human operator as well as to avoid the emergency stop of the collaborative robot which has to be restarted and thus decreases productivity. In order to prevent those collisions the proposed system defines key-areas in each of the locations as well as other relevant positions for the collaborative task. The system uses a Kinect Sensor and a neural network to track the user’s hand over time and Gaussian Mixture Models to make predictions regarding the possible destination key-area given the observed trajectory until that moment. If a collision is predicted the robot pauses the task being executed at the moment in order to prevent it and, once the conflict has been resolved, resumes operation.Esta dissertação apresenta uma possível aproximação para melhorar a interação humanorobot em situações industrias colaborativas, onde um operador humano e um robot industrial colaborativo trabalham num espaço partilhado. A aproximação apresentada nesta dissertação foca situações onde parte do processo de produção deve ser realizado por um operador humano cuja área de trabalho se localiza numa mesa. É utilizado um robot de forma a colocar e retirar produtos de locais especificos da mesa de trabalho do operador. Uma vez que estes locais podem ser acedidos pelo utilizador e pelo robot a qualquer momento é possivel que ocorram colisões que devem ser evitadas, de forma a tornar a interação mais natural para o humano e evitar paragens de emergencia, que requerem que o robot colaborativo seja reiniciado manualmente e, portanto, diminuem a produtividade. De forma a prevenir essas colisões, o sistema proposto define áreas-chave nos locais onde podem ocorrer colisões e em outras localisões relevantes para a tarefa colaborativa a ser executada. A solução proposta utiliza um sensor Kinect, juntamente com uma rede neuronal para seguir a mão do operador ao longo do tempo e usa Gaussian Mixture Models para fazer previsões relativas à área de destino dada a trajetoria observada até ao momento. Se for prevista uma colisão o robot interrompe a execução da tarefa programada de forma a evitar a colisão. Uma vez o conflito resolvido, o robot retoma a tarefa do ponto onde parou.Oliveira, JoséMarques, FranciscoRUNFioravanço, Lucas Monteiro2021-10-08T15:16:09Z2021-052021-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/125779enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:06:27Zoai:run.unl.pt:10362/125779Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:45:43.310783Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Human-aware Collaborative Manipulation with Reaching Motion Prediction |
title |
Human-aware Collaborative Manipulation with Reaching Motion Prediction |
spellingShingle |
Human-aware Collaborative Manipulation with Reaching Motion Prediction Fioravanço, Lucas Monteiro Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Human-aware Collaborative Manipulation with Reaching Motion Prediction |
title_full |
Human-aware Collaborative Manipulation with Reaching Motion Prediction |
title_fullStr |
Human-aware Collaborative Manipulation with Reaching Motion Prediction |
title_full_unstemmed |
Human-aware Collaborative Manipulation with Reaching Motion Prediction |
title_sort |
Human-aware Collaborative Manipulation with Reaching Motion Prediction |
author |
Fioravanço, Lucas Monteiro |
author_facet |
Fioravanço, Lucas Monteiro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira, José Marques, Francisco RUN |
dc.contributor.author.fl_str_mv |
Fioravanço, Lucas Monteiro |
dc.subject.por.fl_str_mv |
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
This dissertations presents a possible approach to improve human-robot interaction in an industrial collaborative situation, where the human operator and a collaborative industrial robot work within a shared work-space. The approach presented in this dissertation focuses on a situation where part of the assembly process needs to be carried out by a human operator, whose assembly station is located on a work-bench, and a robot is used to pick and place products in specific locations on the operator’s work station. Because those locations can be accessed both by the robot or the human operator at any time, collisions can occur and should be avoided in order to make the process more natural for the human operator as well as to avoid the emergency stop of the collaborative robot which has to be restarted and thus decreases productivity. In order to prevent those collisions the proposed system defines key-areas in each of the locations as well as other relevant positions for the collaborative task. The system uses a Kinect Sensor and a neural network to track the user’s hand over time and Gaussian Mixture Models to make predictions regarding the possible destination key-area given the observed trajectory until that moment. If a collision is predicted the robot pauses the task being executed at the moment in order to prevent it and, once the conflict has been resolved, resumes operation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-08T15:16:09Z 2021-05 2021-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/125779 |
url |
http://hdl.handle.net/10362/125779 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138062022737920 |