Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/88617 |
Resumo: | There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype. |
id |
RCAP_5b0ba669696e66d5b75b474a6f1afaf3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/88617 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networksartificial intelligencecomplementcomplement inhibitionCOVID-19genetic susceptibilitySARS-CoV2Science & TechnologyThere is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.- Pfizer Pharmaceuticals(undefined)WileyUniversidade do MinhoAsteris, Panagiotis G.Gavriilaki, EleniTouloumenidou, TasoulaKoravou, Evaggelia-EvdoxiaKoutra, MariaPapayanni, Penelope GeorgiaPouleres, AlexandrosKarali, VassilikiLemonis, Minas E.Mamou, AnnaSkentou, Athanasia D.Papalexandri, ApostoliaVarelas, ChristosChatzopoulou, FaniChatzidimitriou, MariaChatzidimitriou, DimitriosVeleni, AnastasiaRapti, EvdoxiaKioumis, IoannisKaimakamis, EvaggelosBitzani, MillyBoumpas, DimitriosTsantes, ArgyrisSotiropoulos, DamianosPapadopoulou, AnastasiaKalantzis, Ioannis G.Vallianatou, Lydia A.Armaghani, Danial J.Cavaleri, LiborioGandomi, Amir H.Hajihassani, MohsenHasanipanah, MahdiKoopialipoor, MohammadrezaLourenço, Paulo B.Samui, PijushZhou, JianSakellari, IoannaValsami, SerenaPolitou, MariannaKokoris, StylianiAnagnostopoulos, Achilles20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/88617engAsteris, P. G., Gavriilaki, E., Touloumenidou, T., Koravou, E., Koutra, M., Papayanni, P. G., … Anagnostopoulos, A. (2022, January 22). Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks. Journal of Cellular and Molecular Medicine. Wiley. http://doi.org/10.1111/jcmm.170981582-183810.1111/jcmm.1709835064759https://onlinelibrary.wiley.com/doi/10.1111/jcmm.17098info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-10T01:20:12Zoai:repositorium.sdum.uminho.pt:1822/88617Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:37:10.226941Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks |
title |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks |
spellingShingle |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks Asteris, Panagiotis G. artificial intelligence complement complement inhibition COVID-19 genetic susceptibility SARS-CoV2 Science & Technology |
title_short |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks |
title_full |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks |
title_fullStr |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks |
title_full_unstemmed |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks |
title_sort |
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks |
author |
Asteris, Panagiotis G. |
author_facet |
Asteris, Panagiotis G. Gavriilaki, Eleni Touloumenidou, Tasoula Koravou, Evaggelia-Evdoxia Koutra, Maria Papayanni, Penelope Georgia Pouleres, Alexandros Karali, Vassiliki Lemonis, Minas E. Mamou, Anna Skentou, Athanasia D. Papalexandri, Apostolia Varelas, Christos Chatzopoulou, Fani Chatzidimitriou, Maria Chatzidimitriou, Dimitrios Veleni, Anastasia Rapti, Evdoxia Kioumis, Ioannis Kaimakamis, Evaggelos Bitzani, Milly Boumpas, Dimitrios Tsantes, Argyris Sotiropoulos, Damianos Papadopoulou, Anastasia Kalantzis, Ioannis G. Vallianatou, Lydia A. Armaghani, Danial J. Cavaleri, Liborio Gandomi, Amir H. Hajihassani, Mohsen Hasanipanah, Mahdi Koopialipoor, Mohammadreza Lourenço, Paulo B. Samui, Pijush Zhou, Jian Sakellari, Ioanna Valsami, Serena Politou, Marianna Kokoris, Styliani Anagnostopoulos, Achilles |
author_role |
author |
author2 |
Gavriilaki, Eleni Touloumenidou, Tasoula Koravou, Evaggelia-Evdoxia Koutra, Maria Papayanni, Penelope Georgia Pouleres, Alexandros Karali, Vassiliki Lemonis, Minas E. Mamou, Anna Skentou, Athanasia D. Papalexandri, Apostolia Varelas, Christos Chatzopoulou, Fani Chatzidimitriou, Maria Chatzidimitriou, Dimitrios Veleni, Anastasia Rapti, Evdoxia Kioumis, Ioannis Kaimakamis, Evaggelos Bitzani, Milly Boumpas, Dimitrios Tsantes, Argyris Sotiropoulos, Damianos Papadopoulou, Anastasia Kalantzis, Ioannis G. Vallianatou, Lydia A. Armaghani, Danial J. Cavaleri, Liborio Gandomi, Amir H. Hajihassani, Mohsen Hasanipanah, Mahdi Koopialipoor, Mohammadreza Lourenço, Paulo B. Samui, Pijush Zhou, Jian Sakellari, Ioanna Valsami, Serena Politou, Marianna Kokoris, Styliani Anagnostopoulos, Achilles |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Asteris, Panagiotis G. Gavriilaki, Eleni Touloumenidou, Tasoula Koravou, Evaggelia-Evdoxia Koutra, Maria Papayanni, Penelope Georgia Pouleres, Alexandros Karali, Vassiliki Lemonis, Minas E. Mamou, Anna Skentou, Athanasia D. Papalexandri, Apostolia Varelas, Christos Chatzopoulou, Fani Chatzidimitriou, Maria Chatzidimitriou, Dimitrios Veleni, Anastasia Rapti, Evdoxia Kioumis, Ioannis Kaimakamis, Evaggelos Bitzani, Milly Boumpas, Dimitrios Tsantes, Argyris Sotiropoulos, Damianos Papadopoulou, Anastasia Kalantzis, Ioannis G. Vallianatou, Lydia A. Armaghani, Danial J. Cavaleri, Liborio Gandomi, Amir H. Hajihassani, Mohsen Hasanipanah, Mahdi Koopialipoor, Mohammadreza Lourenço, Paulo B. Samui, Pijush Zhou, Jian Sakellari, Ioanna Valsami, Serena Politou, Marianna Kokoris, Styliani Anagnostopoulos, Achilles |
dc.subject.por.fl_str_mv |
artificial intelligence complement complement inhibition COVID-19 genetic susceptibility SARS-CoV2 Science & Technology |
topic |
artificial intelligence complement complement inhibition COVID-19 genetic susceptibility SARS-CoV2 Science & Technology |
description |
There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/88617 |
url |
https://hdl.handle.net/1822/88617 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Asteris, P. G., Gavriilaki, E., Touloumenidou, T., Koravou, E., Koutra, M., Papayanni, P. G., … Anagnostopoulos, A. (2022, January 22). Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks. Journal of Cellular and Molecular Medicine. Wiley. http://doi.org/10.1111/jcmm.17098 1582-1838 10.1111/jcmm.17098 35064759 https://onlinelibrary.wiley.com/doi/10.1111/jcmm.17098 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137422931394560 |