Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Asteris, Panagiotis G.
Data de Publicação: 2022
Outros Autores: Gavriilaki, Eleni, Touloumenidou, Tasoula, Koravou, Evaggelia-Evdoxia, Koutra, Maria, Papayanni, Penelope Georgia, Pouleres, Alexandros, Karali, Vassiliki, Lemonis, Minas E., Mamou, Anna, Skentou, Athanasia D., Papalexandri, Apostolia, Varelas, Christos, Chatzopoulou, Fani, Chatzidimitriou, Maria, Chatzidimitriou, Dimitrios, Veleni, Anastasia, Rapti, Evdoxia, Kioumis, Ioannis, Kaimakamis, Evaggelos, Bitzani, Milly, Boumpas, Dimitrios, Tsantes, Argyris, Sotiropoulos, Damianos, Papadopoulou, Anastasia, Kalantzis, Ioannis G., Vallianatou, Lydia A., Armaghani, Danial J., Cavaleri, Liborio, Gandomi, Amir H., Hajihassani, Mohsen, Hasanipanah, Mahdi, Koopialipoor, Mohammadreza, Lourenço, Paulo B., Samui, Pijush, Zhou, Jian, Sakellari, Ioanna, Valsami, Serena, Politou, Marianna, Kokoris, Styliani, Anagnostopoulos, Achilles
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/88617
Resumo: There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.
id RCAP_5b0ba669696e66d5b75b474a6f1afaf3
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/88617
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networksartificial intelligencecomplementcomplement inhibitionCOVID-19genetic susceptibilitySARS-CoV2Science & TechnologyThere is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.- Pfizer Pharmaceuticals(undefined)WileyUniversidade do MinhoAsteris, Panagiotis G.Gavriilaki, EleniTouloumenidou, TasoulaKoravou, Evaggelia-EvdoxiaKoutra, MariaPapayanni, Penelope GeorgiaPouleres, AlexandrosKarali, VassilikiLemonis, Minas E.Mamou, AnnaSkentou, Athanasia D.Papalexandri, ApostoliaVarelas, ChristosChatzopoulou, FaniChatzidimitriou, MariaChatzidimitriou, DimitriosVeleni, AnastasiaRapti, EvdoxiaKioumis, IoannisKaimakamis, EvaggelosBitzani, MillyBoumpas, DimitriosTsantes, ArgyrisSotiropoulos, DamianosPapadopoulou, AnastasiaKalantzis, Ioannis G.Vallianatou, Lydia A.Armaghani, Danial J.Cavaleri, LiborioGandomi, Amir H.Hajihassani, MohsenHasanipanah, MahdiKoopialipoor, MohammadrezaLourenço, Paulo B.Samui, PijushZhou, JianSakellari, IoannaValsami, SerenaPolitou, MariannaKokoris, StylianiAnagnostopoulos, Achilles20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/88617engAsteris, P. G., Gavriilaki, E., Touloumenidou, T., Koravou, E., Koutra, M., Papayanni, P. G., … Anagnostopoulos, A. (2022, January 22). Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks. Journal of Cellular and Molecular Medicine. Wiley. http://doi.org/10.1111/jcmm.170981582-183810.1111/jcmm.1709835064759https://onlinelibrary.wiley.com/doi/10.1111/jcmm.17098info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-10T01:20:12Zoai:repositorium.sdum.uminho.pt:1822/88617Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:37:10.226941Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
title Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
spellingShingle Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
Asteris, Panagiotis G.
artificial intelligence
complement
complement inhibition
COVID-19
genetic susceptibility
SARS-CoV2
Science & Technology
title_short Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
title_full Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
title_fullStr Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
title_full_unstemmed Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
title_sort Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
author Asteris, Panagiotis G.
author_facet Asteris, Panagiotis G.
Gavriilaki, Eleni
Touloumenidou, Tasoula
Koravou, Evaggelia-Evdoxia
Koutra, Maria
Papayanni, Penelope Georgia
Pouleres, Alexandros
Karali, Vassiliki
Lemonis, Minas E.
Mamou, Anna
Skentou, Athanasia D.
Papalexandri, Apostolia
Varelas, Christos
Chatzopoulou, Fani
Chatzidimitriou, Maria
Chatzidimitriou, Dimitrios
Veleni, Anastasia
Rapti, Evdoxia
Kioumis, Ioannis
Kaimakamis, Evaggelos
Bitzani, Milly
Boumpas, Dimitrios
Tsantes, Argyris
Sotiropoulos, Damianos
Papadopoulou, Anastasia
Kalantzis, Ioannis G.
Vallianatou, Lydia A.
Armaghani, Danial J.
Cavaleri, Liborio
Gandomi, Amir H.
Hajihassani, Mohsen
Hasanipanah, Mahdi
Koopialipoor, Mohammadreza
Lourenço, Paulo B.
Samui, Pijush
Zhou, Jian
Sakellari, Ioanna
Valsami, Serena
Politou, Marianna
Kokoris, Styliani
Anagnostopoulos, Achilles
author_role author
author2 Gavriilaki, Eleni
Touloumenidou, Tasoula
Koravou, Evaggelia-Evdoxia
Koutra, Maria
Papayanni, Penelope Georgia
Pouleres, Alexandros
Karali, Vassiliki
Lemonis, Minas E.
Mamou, Anna
Skentou, Athanasia D.
Papalexandri, Apostolia
Varelas, Christos
Chatzopoulou, Fani
Chatzidimitriou, Maria
Chatzidimitriou, Dimitrios
Veleni, Anastasia
Rapti, Evdoxia
Kioumis, Ioannis
Kaimakamis, Evaggelos
Bitzani, Milly
Boumpas, Dimitrios
Tsantes, Argyris
Sotiropoulos, Damianos
Papadopoulou, Anastasia
Kalantzis, Ioannis G.
Vallianatou, Lydia A.
Armaghani, Danial J.
Cavaleri, Liborio
Gandomi, Amir H.
Hajihassani, Mohsen
Hasanipanah, Mahdi
Koopialipoor, Mohammadreza
Lourenço, Paulo B.
Samui, Pijush
Zhou, Jian
Sakellari, Ioanna
Valsami, Serena
Politou, Marianna
Kokoris, Styliani
Anagnostopoulos, Achilles
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Asteris, Panagiotis G.
Gavriilaki, Eleni
Touloumenidou, Tasoula
Koravou, Evaggelia-Evdoxia
Koutra, Maria
Papayanni, Penelope Georgia
Pouleres, Alexandros
Karali, Vassiliki
Lemonis, Minas E.
Mamou, Anna
Skentou, Athanasia D.
Papalexandri, Apostolia
Varelas, Christos
Chatzopoulou, Fani
Chatzidimitriou, Maria
Chatzidimitriou, Dimitrios
Veleni, Anastasia
Rapti, Evdoxia
Kioumis, Ioannis
Kaimakamis, Evaggelos
Bitzani, Milly
Boumpas, Dimitrios
Tsantes, Argyris
Sotiropoulos, Damianos
Papadopoulou, Anastasia
Kalantzis, Ioannis G.
Vallianatou, Lydia A.
Armaghani, Danial J.
Cavaleri, Liborio
Gandomi, Amir H.
Hajihassani, Mohsen
Hasanipanah, Mahdi
Koopialipoor, Mohammadreza
Lourenço, Paulo B.
Samui, Pijush
Zhou, Jian
Sakellari, Ioanna
Valsami, Serena
Politou, Marianna
Kokoris, Styliani
Anagnostopoulos, Achilles
dc.subject.por.fl_str_mv artificial intelligence
complement
complement inhibition
COVID-19
genetic susceptibility
SARS-CoV2
Science & Technology
topic artificial intelligence
complement
complement inhibition
COVID-19
genetic susceptibility
SARS-CoV2
Science & Technology
description There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/88617
url https://hdl.handle.net/1822/88617
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Asteris, P. G., Gavriilaki, E., Touloumenidou, T., Koravou, E., Koutra, M., Papayanni, P. G., … Anagnostopoulos, A. (2022, January 22). Genetic prediction of ICU hospitalization and mortality in COVID‐19 patients using artificial neural networks. Journal of Cellular and Molecular Medicine. Wiley. http://doi.org/10.1111/jcmm.17098
1582-1838
10.1111/jcmm.17098
35064759
https://onlinelibrary.wiley.com/doi/10.1111/jcmm.17098
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137422931394560