The future in fishfarms: An ocean of technologies to explore
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/31759 |
Resumo: | We present the potential application of Machine Learning (ML) to fish farm in a similar approach used in agriculture to control crop growing and predict diseases. The agriculture concept of Precision Agriculture is now applied to fish farm by applying control-engineering principles to fish production; Precision Fish Farming (PFF) aims to improve the farmer's ability to monitor, control, and document biological processes. PFF can help the industry because it takes into consideration the boundary conditions and potentials that are unique to farming operations in the aquatic environment. The proposed solution improves commercial aquaculture and makes it possible to transition to knowledge-based production regime as opposed to experience-based. We apply a data mining approach to identify and evaluate the impact on the growth and mortality of fish in hatcheries. The use of ML techniques, combined with regulation, can increase the productivity and welfare of aquaculture living organisms. |
id |
RCAP_5b38fef3f2261b60855a30348b70fcd8 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/31759 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The future in fishfarms: An ocean of technologies to exploreMachine learningPrecision fish farmingData analyticsIoTQualidade da água -- Water qualityWe present the potential application of Machine Learning (ML) to fish farm in a similar approach used in agriculture to control crop growing and predict diseases. The agriculture concept of Precision Agriculture is now applied to fish farm by applying control-engineering principles to fish production; Precision Fish Farming (PFF) aims to improve the farmer's ability to monitor, control, and document biological processes. PFF can help the industry because it takes into consideration the boundary conditions and potentials that are unique to farming operations in the aquatic environment. The proposed solution improves commercial aquaculture and makes it possible to transition to knowledge-based production regime as opposed to experience-based. We apply a data mining approach to identify and evaluate the impact on the growth and mortality of fish in hatcheries. The use of ML techniques, combined with regulation, can increase the productivity and welfare of aquaculture living organisms.Springer2024-05-23T10:13:21Z2023-01-01T00:00:00Z20232024-05-23T11:08:42Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/31759eng978-303127498-510.1007/978-3-031-27499-2_30Pires, A.Ferreira, J.Klakegg, O.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:26:53Zoai:repositorio.iscte-iul.pt:10071/31759Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:26:53Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The future in fishfarms: An ocean of technologies to explore |
title |
The future in fishfarms: An ocean of technologies to explore |
spellingShingle |
The future in fishfarms: An ocean of technologies to explore Pires, A. Machine learning Precision fish farming Data analytics IoT Qualidade da água -- Water quality |
title_short |
The future in fishfarms: An ocean of technologies to explore |
title_full |
The future in fishfarms: An ocean of technologies to explore |
title_fullStr |
The future in fishfarms: An ocean of technologies to explore |
title_full_unstemmed |
The future in fishfarms: An ocean of technologies to explore |
title_sort |
The future in fishfarms: An ocean of technologies to explore |
author |
Pires, A. |
author_facet |
Pires, A. Ferreira, J. Klakegg, O. |
author_role |
author |
author2 |
Ferreira, J. Klakegg, O. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pires, A. Ferreira, J. Klakegg, O. |
dc.subject.por.fl_str_mv |
Machine learning Precision fish farming Data analytics IoT Qualidade da água -- Water quality |
topic |
Machine learning Precision fish farming Data analytics IoT Qualidade da água -- Water quality |
description |
We present the potential application of Machine Learning (ML) to fish farm in a similar approach used in agriculture to control crop growing and predict diseases. The agriculture concept of Precision Agriculture is now applied to fish farm by applying control-engineering principles to fish production; Precision Fish Farming (PFF) aims to improve the farmer's ability to monitor, control, and document biological processes. PFF can help the industry because it takes into consideration the boundary conditions and potentials that are unique to farming operations in the aquatic environment. The proposed solution improves commercial aquaculture and makes it possible to transition to knowledge-based production regime as opposed to experience-based. We apply a data mining approach to identify and evaluate the impact on the growth and mortality of fish in hatcheries. The use of ML techniques, combined with regulation, can increase the productivity and welfare of aquaculture living organisms. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-01T00:00:00Z 2023 2024-05-23T10:13:21Z 2024-05-23T11:08:42Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/31759 |
url |
http://hdl.handle.net/10071/31759 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-303127498-5 10.1007/978-3-031-27499-2_30 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546470059933696 |