The future in fishfarms: An ocean of technologies to explore

Detalhes bibliográficos
Autor(a) principal: Pires, A.
Data de Publicação: 2023
Outros Autores: Ferreira, J., Klakegg, O.
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/31759
Resumo: We present the potential application of Machine Learning (ML) to fish farm in a similar approach used in agriculture to control crop growing and predict diseases. The agriculture concept of Precision Agriculture is now applied to fish farm by applying control-engineering principles to fish production; Precision Fish Farming (PFF) aims to improve the farmer's ability to monitor, control, and document biological processes. PFF can help the industry because it takes into consideration the boundary conditions and potentials that are unique to farming operations in the aquatic environment. The proposed solution improves commercial aquaculture and makes it possible to transition to knowledge-based production regime as opposed to experience-based. We apply a data mining approach to identify and evaluate the impact on the growth and mortality of fish in hatcheries. The use of ML techniques, combined with regulation, can increase the productivity and welfare of aquaculture living organisms.
id RCAP_5b38fef3f2261b60855a30348b70fcd8
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/31759
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The future in fishfarms: An ocean of technologies to exploreMachine learningPrecision fish farmingData analyticsIoTQualidade da água -- Water qualityWe present the potential application of Machine Learning (ML) to fish farm in a similar approach used in agriculture to control crop growing and predict diseases. The agriculture concept of Precision Agriculture is now applied to fish farm by applying control-engineering principles to fish production; Precision Fish Farming (PFF) aims to improve the farmer's ability to monitor, control, and document biological processes. PFF can help the industry because it takes into consideration the boundary conditions and potentials that are unique to farming operations in the aquatic environment. The proposed solution improves commercial aquaculture and makes it possible to transition to knowledge-based production regime as opposed to experience-based. We apply a data mining approach to identify and evaluate the impact on the growth and mortality of fish in hatcheries. The use of ML techniques, combined with regulation, can increase the productivity and welfare of aquaculture living organisms.Springer2024-05-23T10:13:21Z2023-01-01T00:00:00Z20232024-05-23T11:08:42Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/31759eng978-303127498-510.1007/978-3-031-27499-2_30Pires, A.Ferreira, J.Klakegg, O.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:26:53Zoai:repositorio.iscte-iul.pt:10071/31759Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:26:53Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The future in fishfarms: An ocean of technologies to explore
title The future in fishfarms: An ocean of technologies to explore
spellingShingle The future in fishfarms: An ocean of technologies to explore
Pires, A.
Machine learning
Precision fish farming
Data analytics
IoT
Qualidade da água -- Water quality
title_short The future in fishfarms: An ocean of technologies to explore
title_full The future in fishfarms: An ocean of technologies to explore
title_fullStr The future in fishfarms: An ocean of technologies to explore
title_full_unstemmed The future in fishfarms: An ocean of technologies to explore
title_sort The future in fishfarms: An ocean of technologies to explore
author Pires, A.
author_facet Pires, A.
Ferreira, J.
Klakegg, O.
author_role author
author2 Ferreira, J.
Klakegg, O.
author2_role author
author
dc.contributor.author.fl_str_mv Pires, A.
Ferreira, J.
Klakegg, O.
dc.subject.por.fl_str_mv Machine learning
Precision fish farming
Data analytics
IoT
Qualidade da água -- Water quality
topic Machine learning
Precision fish farming
Data analytics
IoT
Qualidade da água -- Water quality
description We present the potential application of Machine Learning (ML) to fish farm in a similar approach used in agriculture to control crop growing and predict diseases. The agriculture concept of Precision Agriculture is now applied to fish farm by applying control-engineering principles to fish production; Precision Fish Farming (PFF) aims to improve the farmer's ability to monitor, control, and document biological processes. PFF can help the industry because it takes into consideration the boundary conditions and potentials that are unique to farming operations in the aquatic environment. The proposed solution improves commercial aquaculture and makes it possible to transition to knowledge-based production regime as opposed to experience-based. We apply a data mining approach to identify and evaluate the impact on the growth and mortality of fish in hatcheries. The use of ML techniques, combined with regulation, can increase the productivity and welfare of aquaculture living organisms.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01T00:00:00Z
2023
2024-05-23T10:13:21Z
2024-05-23T11:08:42Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/31759
url http://hdl.handle.net/10071/31759
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-303127498-5
10.1007/978-3-031-27499-2_30
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546470059933696