Neural network models in greenhouse air temperature prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4081 https://doi.org/10.1016/S0925-2312(01)00620-8 |
Resumo: | The adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy both off-line and on-line methods could be of use to accomplish this task. In this paper known hybrid off-line training methods and on-line learning algorithms are analyzed. An off-line method and its application to on-line learning is proposed. It exploits the linear-non-linear structure found in radial basis function neural networks. |
id |
RCAP_5c33487f90f2909f5cece4ee1e355977 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4081 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Neural network models in greenhouse air temperature predictionRadial basis functionsNeural networksGreenhouse environmental controlModellingThe adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy both off-line and on-line methods could be of use to accomplish this task. In this paper known hybrid off-line training methods and on-line learning algorithms are analyzed. An off-line method and its application to on-line learning is proposed. It exploits the linear-non-linear structure found in radial basis function neural networks.http://www.sciencedirect.com/science/article/B6V10-44NM87G-5/1/eece7333cd9cdc60d1a36eda697cbb9c2002info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4081http://hdl.handle.net/10316/4081https://doi.org/10.1016/S0925-2312(01)00620-8engNeurocomputing. 43:1-4 (2002) 51-75Ferreira, P. M.Faria, E. A.Ruano, A. E.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:59:54Zoai:estudogeral.uc.pt:10316/4081Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:57:53.416717Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Neural network models in greenhouse air temperature prediction |
title |
Neural network models in greenhouse air temperature prediction |
spellingShingle |
Neural network models in greenhouse air temperature prediction Ferreira, P. M. Radial basis functions Neural networks Greenhouse environmental control Modelling |
title_short |
Neural network models in greenhouse air temperature prediction |
title_full |
Neural network models in greenhouse air temperature prediction |
title_fullStr |
Neural network models in greenhouse air temperature prediction |
title_full_unstemmed |
Neural network models in greenhouse air temperature prediction |
title_sort |
Neural network models in greenhouse air temperature prediction |
author |
Ferreira, P. M. |
author_facet |
Ferreira, P. M. Faria, E. A. Ruano, A. E. |
author_role |
author |
author2 |
Faria, E. A. Ruano, A. E. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreira, P. M. Faria, E. A. Ruano, A. E. |
dc.subject.por.fl_str_mv |
Radial basis functions Neural networks Greenhouse environmental control Modelling |
topic |
Radial basis functions Neural networks Greenhouse environmental control Modelling |
description |
The adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy both off-line and on-line methods could be of use to accomplish this task. In this paper known hybrid off-line training methods and on-line learning algorithms are analyzed. An off-line method and its application to on-line learning is proposed. It exploits the linear-non-linear structure found in radial basis function neural networks. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4081 http://hdl.handle.net/10316/4081 https://doi.org/10.1016/S0925-2312(01)00620-8 |
url |
http://hdl.handle.net/10316/4081 https://doi.org/10.1016/S0925-2312(01)00620-8 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Neurocomputing. 43:1-4 (2002) 51-75 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133868187451392 |