Neural network models in greenhouse air temperature prediction

Detalhes bibliográficos
Autor(a) principal: Ferreira, P. M.
Data de Publicação: 2002
Outros Autores: Faria, E. A., Ruano, A. E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4081
https://doi.org/10.1016/S0925-2312(01)00620-8
Resumo: The adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy both off-line and on-line methods could be of use to accomplish this task. In this paper known hybrid off-line training methods and on-line learning algorithms are analyzed. An off-line method and its application to on-line learning is proposed. It exploits the linear-non-linear structure found in radial basis function neural networks.
id RCAP_5c33487f90f2909f5cece4ee1e355977
oai_identifier_str oai:estudogeral.uc.pt:10316/4081
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Neural network models in greenhouse air temperature predictionRadial basis functionsNeural networksGreenhouse environmental controlModellingThe adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy both off-line and on-line methods could be of use to accomplish this task. In this paper known hybrid off-line training methods and on-line learning algorithms are analyzed. An off-line method and its application to on-line learning is proposed. It exploits the linear-non-linear structure found in radial basis function neural networks.http://www.sciencedirect.com/science/article/B6V10-44NM87G-5/1/eece7333cd9cdc60d1a36eda697cbb9c2002info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4081http://hdl.handle.net/10316/4081https://doi.org/10.1016/S0925-2312(01)00620-8engNeurocomputing. 43:1-4 (2002) 51-75Ferreira, P. M.Faria, E. A.Ruano, A. E.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:59:54Zoai:estudogeral.uc.pt:10316/4081Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:57:53.416717Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Neural network models in greenhouse air temperature prediction
title Neural network models in greenhouse air temperature prediction
spellingShingle Neural network models in greenhouse air temperature prediction
Ferreira, P. M.
Radial basis functions
Neural networks
Greenhouse environmental control
Modelling
title_short Neural network models in greenhouse air temperature prediction
title_full Neural network models in greenhouse air temperature prediction
title_fullStr Neural network models in greenhouse air temperature prediction
title_full_unstemmed Neural network models in greenhouse air temperature prediction
title_sort Neural network models in greenhouse air temperature prediction
author Ferreira, P. M.
author_facet Ferreira, P. M.
Faria, E. A.
Ruano, A. E.
author_role author
author2 Faria, E. A.
Ruano, A. E.
author2_role author
author
dc.contributor.author.fl_str_mv Ferreira, P. M.
Faria, E. A.
Ruano, A. E.
dc.subject.por.fl_str_mv Radial basis functions
Neural networks
Greenhouse environmental control
Modelling
topic Radial basis functions
Neural networks
Greenhouse environmental control
Modelling
description The adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy both off-line and on-line methods could be of use to accomplish this task. In this paper known hybrid off-line training methods and on-line learning algorithms are analyzed. An off-line method and its application to on-line learning is proposed. It exploits the linear-non-linear structure found in radial basis function neural networks.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4081
http://hdl.handle.net/10316/4081
https://doi.org/10.1016/S0925-2312(01)00620-8
url http://hdl.handle.net/10316/4081
https://doi.org/10.1016/S0925-2312(01)00620-8
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Neurocomputing. 43:1-4 (2002) 51-75
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133868187451392