Prediction of building's temperature using neural networks models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/2239 |
Resumo: | The use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this paper the design of inside air temperature predictive neural network models, to be used for predictive control of airconditioned systems, is discussed. The use of multi-objective genetic algorithms for designing off-line radial basis function neural network models is detailed. The performance of these data-driven models is compared, favourably, with a multi-node physically based model. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year. The use of long-range predictive models for airconditioning systems control is demonstrated, in simulations, achieving a good temperature regulation with important energy savings. |
id |
RCAP_e7c788796acf096665f7670d6ad8beee |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/2239 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Prediction of building's temperature using neural networks modelsTemperature predictionNeural networksMulti-objective genetic algorithmRadial basis function networksThe use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this paper the design of inside air temperature predictive neural network models, to be used for predictive control of airconditioned systems, is discussed. The use of multi-objective genetic algorithms for designing off-line radial basis function neural network models is detailed. The performance of these data-driven models is compared, favourably, with a multi-node physically based model. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year. The use of long-range predictive models for airconditioning systems control is demonstrated, in simulations, achieving a good temperature regulation with important energy savings.ElsevierSapientiaRuano, AntonioCrispim, E. M.Conceição, EusébioLúcio, Maria Manuela Jacinto do Rosário2013-02-06T14:53:24Z20062013-01-26T19:01:53Z2006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/2239engRuano, A. E.; Crispim, E. M.; Conceição, E. Z. E.; Lúcio, M. M. J. R. Prediction of building's temperature using neural networks models, Energy and Buildings, 38, 6, 682-694, 2006.03787788AUT: ARU00698; ECO01058;http://dx.doi.org/10.1016/j.enbuild.2005.09.007info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:13:16Zoai:sapientia.ualg.pt:10400.1/2239Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:56:07.788043Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Prediction of building's temperature using neural networks models |
title |
Prediction of building's temperature using neural networks models |
spellingShingle |
Prediction of building's temperature using neural networks models Ruano, Antonio Temperature prediction Neural networks Multi-objective genetic algorithm Radial basis function networks |
title_short |
Prediction of building's temperature using neural networks models |
title_full |
Prediction of building's temperature using neural networks models |
title_fullStr |
Prediction of building's temperature using neural networks models |
title_full_unstemmed |
Prediction of building's temperature using neural networks models |
title_sort |
Prediction of building's temperature using neural networks models |
author |
Ruano, Antonio |
author_facet |
Ruano, Antonio Crispim, E. M. Conceição, Eusébio Lúcio, Maria Manuela Jacinto do Rosário |
author_role |
author |
author2 |
Crispim, E. M. Conceição, Eusébio Lúcio, Maria Manuela Jacinto do Rosário |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Ruano, Antonio Crispim, E. M. Conceição, Eusébio Lúcio, Maria Manuela Jacinto do Rosário |
dc.subject.por.fl_str_mv |
Temperature prediction Neural networks Multi-objective genetic algorithm Radial basis function networks |
topic |
Temperature prediction Neural networks Multi-objective genetic algorithm Radial basis function networks |
description |
The use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this paper the design of inside air temperature predictive neural network models, to be used for predictive control of airconditioned systems, is discussed. The use of multi-objective genetic algorithms for designing off-line radial basis function neural network models is detailed. The performance of these data-driven models is compared, favourably, with a multi-node physically based model. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year. The use of long-range predictive models for airconditioning systems control is demonstrated, in simulations, achieving a good temperature regulation with important energy savings. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 2006-01-01T00:00:00Z 2013-02-06T14:53:24Z 2013-01-26T19:01:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/2239 |
url |
http://hdl.handle.net/10400.1/2239 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ruano, A. E.; Crispim, E. M.; Conceição, E. Z. E.; Lúcio, M. M. J. R. Prediction of building's temperature using neural networks models, Energy and Buildings, 38, 6, 682-694, 2006. 03787788 AUT: ARU00698; ECO01058; http://dx.doi.org/10.1016/j.enbuild.2005.09.007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133167416770560 |