Prediction of building's temperature using neural networks models

Detalhes bibliográficos
Autor(a) principal: Ruano, Antonio
Data de Publicação: 2006
Outros Autores: Crispim, E. M., Conceição, Eusébio, Lúcio, Maria Manuela Jacinto do Rosário
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/2239
Resumo: The use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this paper the design of inside air temperature predictive neural network models, to be used for predictive control of airconditioned systems, is discussed. The use of multi-objective genetic algorithms for designing off-line radial basis function neural network models is detailed. The performance of these data-driven models is compared, favourably, with a multi-node physically based model. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year. The use of long-range predictive models for airconditioning systems control is demonstrated, in simulations, achieving a good temperature regulation with important energy savings.
id RCAP_e7c788796acf096665f7670d6ad8beee
oai_identifier_str oai:sapientia.ualg.pt:10400.1/2239
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Prediction of building's temperature using neural networks modelsTemperature predictionNeural networksMulti-objective genetic algorithmRadial basis function networksThe use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this paper the design of inside air temperature predictive neural network models, to be used for predictive control of airconditioned systems, is discussed. The use of multi-objective genetic algorithms for designing off-line radial basis function neural network models is detailed. The performance of these data-driven models is compared, favourably, with a multi-node physically based model. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year. The use of long-range predictive models for airconditioning systems control is demonstrated, in simulations, achieving a good temperature regulation with important energy savings.ElsevierSapientiaRuano, AntonioCrispim, E. M.Conceição, EusébioLúcio, Maria Manuela Jacinto do Rosário2013-02-06T14:53:24Z20062013-01-26T19:01:53Z2006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/2239engRuano, A. E.; Crispim, E. M.; Conceição, E. Z. E.; Lúcio, M. M. J. R. Prediction of building's temperature using neural networks models, Energy and Buildings, 38, 6, 682-694, 2006.03787788AUT: ARU00698; ECO01058;http://dx.doi.org/10.1016/j.enbuild.2005.09.007info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:13:16Zoai:sapientia.ualg.pt:10400.1/2239Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:56:07.788043Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Prediction of building's temperature using neural networks models
title Prediction of building's temperature using neural networks models
spellingShingle Prediction of building's temperature using neural networks models
Ruano, Antonio
Temperature prediction
Neural networks
Multi-objective genetic algorithm
Radial basis function networks
title_short Prediction of building's temperature using neural networks models
title_full Prediction of building's temperature using neural networks models
title_fullStr Prediction of building's temperature using neural networks models
title_full_unstemmed Prediction of building's temperature using neural networks models
title_sort Prediction of building's temperature using neural networks models
author Ruano, Antonio
author_facet Ruano, Antonio
Crispim, E. M.
Conceição, Eusébio
Lúcio, Maria Manuela Jacinto do Rosário
author_role author
author2 Crispim, E. M.
Conceição, Eusébio
Lúcio, Maria Manuela Jacinto do Rosário
author2_role author
author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Ruano, Antonio
Crispim, E. M.
Conceição, Eusébio
Lúcio, Maria Manuela Jacinto do Rosário
dc.subject.por.fl_str_mv Temperature prediction
Neural networks
Multi-objective genetic algorithm
Radial basis function networks
topic Temperature prediction
Neural networks
Multi-objective genetic algorithm
Radial basis function networks
description The use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this paper the design of inside air temperature predictive neural network models, to be used for predictive control of airconditioned systems, is discussed. The use of multi-objective genetic algorithms for designing off-line radial basis function neural network models is detailed. The performance of these data-driven models is compared, favourably, with a multi-node physically based model. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year. The use of long-range predictive models for airconditioning systems control is demonstrated, in simulations, achieving a good temperature regulation with important energy savings.
publishDate 2006
dc.date.none.fl_str_mv 2006
2006-01-01T00:00:00Z
2013-02-06T14:53:24Z
2013-01-26T19:01:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/2239
url http://hdl.handle.net/10400.1/2239
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ruano, A. E.; Crispim, E. M.; Conceição, E. Z. E.; Lúcio, M. M. J. R. Prediction of building's temperature using neural networks models, Energy and Buildings, 38, 6, 682-694, 2006.
03787788
AUT: ARU00698; ECO01058;
http://dx.doi.org/10.1016/j.enbuild.2005.09.007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133167416770560