Antimicrobial effect of polymeric biomaterials for bone infection treatment

Detalhes bibliográficos
Autor(a) principal: Ferreira, Magda Sofia Catroga
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/19540
Resumo: Bone infection, mainly caused by Staphylococcus aureus, is a public health concern. Treatment is challenging due to multi-resistant strains, and S. aureus ability to adhere and form biofilm on bone and implant surfaces, as well as to invade and persist in osteoblast cells. The present work consisted in the preparation and evaluation of novel acrylic polymeric systems that provide local and controlled antibiotic delivery for the treatment of bone infection, namely levofloxacin-loaded acrylic bone cement (BC), and vancomycin or daptomycin-loaded acrylic microparticles (MP). Properties of both delivery systems with high impact on clinical performance were tested. Namely, contact angle and surface energy were determined in BC matrices and encapsulation efficiency in MP formulations. Release studies of levofloxacin-loaded BC matrices were also conducted. Also, the anti-biofilm activity of these systems was evaluated against S. aureus strains. Furthermore, BC and MP formulations were tested concerning the antibacterial intracellular activity using a human osteoblast infection model. Overall, both BC formulations’ surface characteristics and MP encapsulation efficiency were in agreement with previously published data. The release studies of levofloxacin from BC matrices showed that the drug release is size- and incubation medium-dependent. All BC matrices loaded with levofloxacin concentrations of 1.5 % or higher exhibited anti-biofilm activity against all S. aureus tested strains. For BC matrices and Vancomycin-loaded MP, a decrease of viable intracellular bacteria was observed. For Daptomycin-loaded MP, no viable intracellular bacteria were detected. In conclusion, this work has shown that the BC formulations with drug concentration of 1.5 % or 2.5 % and daptomycin-loaded MP show potential to be used in the context of bone infection treatment.
id RCAP_5ca84e89dfe8773296452e2bc2bb7744
oai_identifier_str oai:run.unl.pt:10362/19540
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Antimicrobial effect of polymeric biomaterials for bone infection treatmentBone infectionBone cementMicroparticlesLevofloxacinStaphylococcus aureusIntracellular infectionDomínio/Área Científica::Engenharia e Tecnologia::Engenharia QuímicaBone infection, mainly caused by Staphylococcus aureus, is a public health concern. Treatment is challenging due to multi-resistant strains, and S. aureus ability to adhere and form biofilm on bone and implant surfaces, as well as to invade and persist in osteoblast cells. The present work consisted in the preparation and evaluation of novel acrylic polymeric systems that provide local and controlled antibiotic delivery for the treatment of bone infection, namely levofloxacin-loaded acrylic bone cement (BC), and vancomycin or daptomycin-loaded acrylic microparticles (MP). Properties of both delivery systems with high impact on clinical performance were tested. Namely, contact angle and surface energy were determined in BC matrices and encapsulation efficiency in MP formulations. Release studies of levofloxacin-loaded BC matrices were also conducted. Also, the anti-biofilm activity of these systems was evaluated against S. aureus strains. Furthermore, BC and MP formulations were tested concerning the antibacterial intracellular activity using a human osteoblast infection model. Overall, both BC formulations’ surface characteristics and MP encapsulation efficiency were in agreement with previously published data. The release studies of levofloxacin from BC matrices showed that the drug release is size- and incubation medium-dependent. All BC matrices loaded with levofloxacin concentrations of 1.5 % or higher exhibited anti-biofilm activity against all S. aureus tested strains. For BC matrices and Vancomycin-loaded MP, a decrease of viable intracellular bacteria was observed. For Daptomycin-loaded MP, no viable intracellular bacteria were detected. In conclusion, this work has shown that the BC formulations with drug concentration of 1.5 % or 2.5 % and daptomycin-loaded MP show potential to be used in the context of bone infection treatment.Bettencourt, AnaJordão, LuísaRUNFerreira, Magda Sofia Catroga2016-12-12T15:26:37Z2016-092016-122016-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/19540enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:01:09Zoai:run.unl.pt:10362/19540Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:25:31.148292Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Antimicrobial effect of polymeric biomaterials for bone infection treatment
title Antimicrobial effect of polymeric biomaterials for bone infection treatment
spellingShingle Antimicrobial effect of polymeric biomaterials for bone infection treatment
Ferreira, Magda Sofia Catroga
Bone infection
Bone cement
Microparticles
Levofloxacin
Staphylococcus aureus
Intracellular infection
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
title_short Antimicrobial effect of polymeric biomaterials for bone infection treatment
title_full Antimicrobial effect of polymeric biomaterials for bone infection treatment
title_fullStr Antimicrobial effect of polymeric biomaterials for bone infection treatment
title_full_unstemmed Antimicrobial effect of polymeric biomaterials for bone infection treatment
title_sort Antimicrobial effect of polymeric biomaterials for bone infection treatment
author Ferreira, Magda Sofia Catroga
author_facet Ferreira, Magda Sofia Catroga
author_role author
dc.contributor.none.fl_str_mv Bettencourt, Ana
Jordão, Luísa
RUN
dc.contributor.author.fl_str_mv Ferreira, Magda Sofia Catroga
dc.subject.por.fl_str_mv Bone infection
Bone cement
Microparticles
Levofloxacin
Staphylococcus aureus
Intracellular infection
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
topic Bone infection
Bone cement
Microparticles
Levofloxacin
Staphylococcus aureus
Intracellular infection
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
description Bone infection, mainly caused by Staphylococcus aureus, is a public health concern. Treatment is challenging due to multi-resistant strains, and S. aureus ability to adhere and form biofilm on bone and implant surfaces, as well as to invade and persist in osteoblast cells. The present work consisted in the preparation and evaluation of novel acrylic polymeric systems that provide local and controlled antibiotic delivery for the treatment of bone infection, namely levofloxacin-loaded acrylic bone cement (BC), and vancomycin or daptomycin-loaded acrylic microparticles (MP). Properties of both delivery systems with high impact on clinical performance were tested. Namely, contact angle and surface energy were determined in BC matrices and encapsulation efficiency in MP formulations. Release studies of levofloxacin-loaded BC matrices were also conducted. Also, the anti-biofilm activity of these systems was evaluated against S. aureus strains. Furthermore, BC and MP formulations were tested concerning the antibacterial intracellular activity using a human osteoblast infection model. Overall, both BC formulations’ surface characteristics and MP encapsulation efficiency were in agreement with previously published data. The release studies of levofloxacin from BC matrices showed that the drug release is size- and incubation medium-dependent. All BC matrices loaded with levofloxacin concentrations of 1.5 % or higher exhibited anti-biofilm activity against all S. aureus tested strains. For BC matrices and Vancomycin-loaded MP, a decrease of viable intracellular bacteria was observed. For Daptomycin-loaded MP, no viable intracellular bacteria were detected. In conclusion, this work has shown that the BC formulations with drug concentration of 1.5 % or 2.5 % and daptomycin-loaded MP show potential to be used in the context of bone infection treatment.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-12T15:26:37Z
2016-09
2016-12
2016-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/19540
url http://hdl.handle.net/10362/19540
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137886740676608