Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39883 |
Resumo: | Taking into account a wavelet transform associated with the quadratic-phase Fourier transform, we obtain several types of uncertainty principles, as well as identify conditions that guarantee the unique solution for a class of integral equations (related with the previous mentioned transforms). Namely, we obtain a Heisenberg–Pauli–Weyl-type uncertainty principle, a logarithmic-type uncertainty principle, a local-type uncertainty principle, an entropy-based uncertainty principle, a Nazarov-type uncertainty principle, an Amrein–Berthier–Benedicks-type uncertainty principle, a Donoho–Stark-type uncertainty principle, a Hardy-type uncertainty principle, and a Beurling-type uncertainty principle for such quadratic-phase wavelet transform. For this, it is crucial to consider a convolution and its consequences in establishing an explicit relation with the quadratic-phase Fourier transform. |
id |
RCAP_5d07990612295921d672686e7a144570 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39883 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transformConvolutionIntegral equationQuadratic-phase Fourier transformQuadratic-phase wavelet transformUncertainty principleTaking into account a wavelet transform associated with the quadratic-phase Fourier transform, we obtain several types of uncertainty principles, as well as identify conditions that guarantee the unique solution for a class of integral equations (related with the previous mentioned transforms). Namely, we obtain a Heisenberg–Pauli–Weyl-type uncertainty principle, a logarithmic-type uncertainty principle, a local-type uncertainty principle, an entropy-based uncertainty principle, a Nazarov-type uncertainty principle, an Amrein–Berthier–Benedicks-type uncertainty principle, a Donoho–Stark-type uncertainty principle, a Hardy-type uncertainty principle, and a Beurling-type uncertainty principle for such quadratic-phase wavelet transform. For this, it is crucial to consider a convolution and its consequences in establishing an explicit relation with the quadratic-phase Fourier transform.Wiley2024-11-01T00:00:00Z2023-01-01T00:00:00Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39883eng0170-421410.1002/mma.9462Castro, L. P.Guerra, R. C.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:16:29Zoai:ria.ua.pt:10773/39883Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:25.266666Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform |
title |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform |
spellingShingle |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform Castro, L. P. Convolution Integral equation Quadratic-phase Fourier transform Quadratic-phase wavelet transform Uncertainty principle |
title_short |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform |
title_full |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform |
title_fullStr |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform |
title_full_unstemmed |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform |
title_sort |
Uncertainty principles and integral equations associated with a quadratic-phase wavelet transform |
author |
Castro, L. P. |
author_facet |
Castro, L. P. Guerra, R. C. |
author_role |
author |
author2 |
Guerra, R. C. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Castro, L. P. Guerra, R. C. |
dc.subject.por.fl_str_mv |
Convolution Integral equation Quadratic-phase Fourier transform Quadratic-phase wavelet transform Uncertainty principle |
topic |
Convolution Integral equation Quadratic-phase Fourier transform Quadratic-phase wavelet transform Uncertainty principle |
description |
Taking into account a wavelet transform associated with the quadratic-phase Fourier transform, we obtain several types of uncertainty principles, as well as identify conditions that guarantee the unique solution for a class of integral equations (related with the previous mentioned transforms). Namely, we obtain a Heisenberg–Pauli–Weyl-type uncertainty principle, a logarithmic-type uncertainty principle, a local-type uncertainty principle, an entropy-based uncertainty principle, a Nazarov-type uncertainty principle, an Amrein–Berthier–Benedicks-type uncertainty principle, a Donoho–Stark-type uncertainty principle, a Hardy-type uncertainty principle, and a Beurling-type uncertainty principle for such quadratic-phase wavelet transform. For this, it is crucial to consider a convolution and its consequences in establishing an explicit relation with the quadratic-phase Fourier transform. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-01T00:00:00Z 2023 2024-11-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39883 |
url |
http://hdl.handle.net/10773/39883 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0170-4214 10.1002/mma.9462 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137744917626880 |