Predicting the survival of primary biliary cholangitis patients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/80679 |
Resumo: | Data are available in a publicly accessible repository that does not issue DOIs. Publicly available datasets were analysed in this study. These data can be found here: https://www.kaggle.com/jixing475/mayo-clinic-primary-biliary-cirrhosis-data (accessed on 1 July 2022). |
id |
RCAP_5d8da25513b0b43207ecbb679ef74ff9 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/80679 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting the survival of primary biliary cholangitis patientsClassificationData miningPredictive modelsPrimary biliary cholangitisScience & TechnologyData are available in a publicly accessible repository that does not issue DOIs. Publicly available datasets were analysed in this study. These data can be found here: https://www.kaggle.com/jixing475/mayo-clinic-primary-biliary-cirrhosis-data (accessed on 1 July 2022).Primary Biliary Cholangitis, which is thought to be caused by a combination of genetic and environmental factors, is a slow-growing chronic autoimmune disease in which the human body’s immune system attacks healthy cells and tissues and gradually destroys the bile ducts in the liver. A reliable diagnosis of this clinical condition, followed by appropriate intervention measures, can slow the damage to the liver and prevent further complications, especially in the early stages. Hence, the focus of this study is to compare different classification Data Mining techniques, using clinical and demographic data, in an attempt to predict whether or not a Primary Biliary Cholangitis patient will survive. Data from 418 patients with Primary Biliary Cholangitis, following the Mayo Clinic’s research between 1974 and 1984, were used to predict patient survival or non-survival using the Cross Industry Standard Process for Data Mining methodology. Different classification techniques were applied during this process, more specifically, Decision Tree, Random Tree, Random Forest, and Naïve Bayes. The model with the best performance used the Random Forest classifier and Split Validation with a ratio of 0.8, yielding values greater than 93% in all evaluation metrics. With further testing, this model may provide benefits in terms of medical decision support.This work is funded by “Fundação para a Ciência e Tecnologia (FCT)” within the R&D Units Project Scope: UIDB/00319/2020.Multidisciplinary Digital Publishing InstituteUniversidade do MinhoFerreira, DianaNeto, CristianaLopes, JoséDuarte, Júlio Miguel MarquesAbelha, AntónioMachado, José Manuel2022-08-112022-08-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/80679engFerreira, D.; Neto, C.; Lopes, J.; Duarte, J.; Abelha, A.; Machado, J. Predicting the Survival of Primary Biliary Cholangitis Patients. Appl. Sci. 2022, 12, 8043. https://doi.org/10.3390/app121680432076-341710.3390/app12168043https://www.mdpi.com/2076-3417/12/16/8043info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:58:48Zoai:repositorium.sdum.uminho.pt:1822/80679Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:35.231934Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting the survival of primary biliary cholangitis patients |
title |
Predicting the survival of primary biliary cholangitis patients |
spellingShingle |
Predicting the survival of primary biliary cholangitis patients Ferreira, Diana Classification Data mining Predictive models Primary biliary cholangitis Science & Technology |
title_short |
Predicting the survival of primary biliary cholangitis patients |
title_full |
Predicting the survival of primary biliary cholangitis patients |
title_fullStr |
Predicting the survival of primary biliary cholangitis patients |
title_full_unstemmed |
Predicting the survival of primary biliary cholangitis patients |
title_sort |
Predicting the survival of primary biliary cholangitis patients |
author |
Ferreira, Diana |
author_facet |
Ferreira, Diana Neto, Cristiana Lopes, José Duarte, Júlio Miguel Marques Abelha, António Machado, José Manuel |
author_role |
author |
author2 |
Neto, Cristiana Lopes, José Duarte, Júlio Miguel Marques Abelha, António Machado, José Manuel |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Diana Neto, Cristiana Lopes, José Duarte, Júlio Miguel Marques Abelha, António Machado, José Manuel |
dc.subject.por.fl_str_mv |
Classification Data mining Predictive models Primary biliary cholangitis Science & Technology |
topic |
Classification Data mining Predictive models Primary biliary cholangitis Science & Technology |
description |
Data are available in a publicly accessible repository that does not issue DOIs. Publicly available datasets were analysed in this study. These data can be found here: https://www.kaggle.com/jixing475/mayo-clinic-primary-biliary-cirrhosis-data (accessed on 1 July 2022). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-11 2022-08-11T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/80679 |
url |
https://hdl.handle.net/1822/80679 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ferreira, D.; Neto, C.; Lopes, J.; Duarte, J.; Abelha, A.; Machado, J. Predicting the Survival of Primary Biliary Cholangitis Patients. Appl. Sci. 2022, 12, 8043. https://doi.org/10.3390/app12168043 2076-3417 10.3390/app12168043 https://www.mdpi.com/2076-3417/12/16/8043 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132247546134528 |