A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/20209 |
Resumo: | In the present work we originally tested the suitability of corn starch-polycaprolactone (SPCL) scaffolds for pursuing a cartilage tissue engineering approach. Bovine articular chondrocytes were seeded on SPCL scaffolds under dynamic conditions using spinner flasks (total of 4 scaffolds per spinner flask using cell suspensions of 0.5×106 cells/ml) and cultured under orbital agitation for a total of 6 weeks. Poly(glycolic acid) (PGA) non-woven scaffolds and bovine native articular cartilage were used as standard controls for the conducted experiments. PGA is a kind of standard in tissue engineering approaches and it was used as a control in that sense. The tissue engineered constructs were characterized at different time periods by scanning electron microscopy (SEM), hematoxylin-eosin (H&E) and toluidine blue stainings, immunolocalisation of collagen types I and II, and dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) quantification assay. SEM results for SPCL constructs showed that the chondrocytes presented normal morphological features, with extensive cells presence at the surface of the support structures, and penetrating the scaffolds pores. These observations were further corroborated by H&E staining. Toluidine blue and immunohistochemistry exhibited extracellular matrix deposition throughout the 3D structure. Glycosaminoglycans, and collagen types I and II were detected. However, stronger staining for collagen type II was observed when compared to collagen type I. The PGA constructs presented similar features toSPCLat the end of the 6 weeks. PGA constructs exhibited higher amounts of matrix glycosaminoglycans when compared to the SPCL scaffolds. However, we also observed a lack of tissue in the central area of the PGA scaffolds. Reasons for these occurrences may include inefficient cells penetration, necrosis due to high cell densities, or necrosis related with acidic by-products degradation. Such situation was not detected in the SPCL scaffolds, indicating the much better biocompatibility of the starch based scaffolds. |
id |
RCAP_60688dff06eeb27dc67cfb434360cc97 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/20209 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytesScience & TechnologyIn the present work we originally tested the suitability of corn starch-polycaprolactone (SPCL) scaffolds for pursuing a cartilage tissue engineering approach. Bovine articular chondrocytes were seeded on SPCL scaffolds under dynamic conditions using spinner flasks (total of 4 scaffolds per spinner flask using cell suspensions of 0.5×106 cells/ml) and cultured under orbital agitation for a total of 6 weeks. Poly(glycolic acid) (PGA) non-woven scaffolds and bovine native articular cartilage were used as standard controls for the conducted experiments. PGA is a kind of standard in tissue engineering approaches and it was used as a control in that sense. The tissue engineered constructs were characterized at different time periods by scanning electron microscopy (SEM), hematoxylin-eosin (H&E) and toluidine blue stainings, immunolocalisation of collagen types I and II, and dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) quantification assay. SEM results for SPCL constructs showed that the chondrocytes presented normal morphological features, with extensive cells presence at the surface of the support structures, and penetrating the scaffolds pores. These observations were further corroborated by H&E staining. Toluidine blue and immunohistochemistry exhibited extracellular matrix deposition throughout the 3D structure. Glycosaminoglycans, and collagen types I and II were detected. However, stronger staining for collagen type II was observed when compared to collagen type I. The PGA constructs presented similar features toSPCLat the end of the 6 weeks. PGA constructs exhibited higher amounts of matrix glycosaminoglycans when compared to the SPCL scaffolds. However, we also observed a lack of tissue in the central area of the PGA scaffolds. Reasons for these occurrences may include inefficient cells penetration, necrosis due to high cell densities, or necrosis related with acidic by-products degradation. Such situation was not detected in the SPCL scaffolds, indicating the much better biocompatibility of the starch based scaffolds.SpringerUniversidade do MinhoOliveira, J. T.Crawford, AileenMundy, JeniferMoreira, A. R.Gomes, Manuela E.Hatton, Paul V.Reis, R. L.20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20209eng0957-45301573-483810.1007/s10856-006-0692-717323161info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:51:14Zoai:repositorium.sdum.uminho.pt:1822/20209Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:50:05.292947Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes |
title |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes |
spellingShingle |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes Oliveira, J. T. Science & Technology |
title_short |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes |
title_full |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes |
title_fullStr |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes |
title_full_unstemmed |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes |
title_sort |
A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes |
author |
Oliveira, J. T. |
author_facet |
Oliveira, J. T. Crawford, Aileen Mundy, Jenifer Moreira, A. R. Gomes, Manuela E. Hatton, Paul V. Reis, R. L. |
author_role |
author |
author2 |
Crawford, Aileen Mundy, Jenifer Moreira, A. R. Gomes, Manuela E. Hatton, Paul V. Reis, R. L. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Oliveira, J. T. Crawford, Aileen Mundy, Jenifer Moreira, A. R. Gomes, Manuela E. Hatton, Paul V. Reis, R. L. |
dc.subject.por.fl_str_mv |
Science & Technology |
topic |
Science & Technology |
description |
In the present work we originally tested the suitability of corn starch-polycaprolactone (SPCL) scaffolds for pursuing a cartilage tissue engineering approach. Bovine articular chondrocytes were seeded on SPCL scaffolds under dynamic conditions using spinner flasks (total of 4 scaffolds per spinner flask using cell suspensions of 0.5×106 cells/ml) and cultured under orbital agitation for a total of 6 weeks. Poly(glycolic acid) (PGA) non-woven scaffolds and bovine native articular cartilage were used as standard controls for the conducted experiments. PGA is a kind of standard in tissue engineering approaches and it was used as a control in that sense. The tissue engineered constructs were characterized at different time periods by scanning electron microscopy (SEM), hematoxylin-eosin (H&E) and toluidine blue stainings, immunolocalisation of collagen types I and II, and dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) quantification assay. SEM results for SPCL constructs showed that the chondrocytes presented normal morphological features, with extensive cells presence at the surface of the support structures, and penetrating the scaffolds pores. These observations were further corroborated by H&E staining. Toluidine blue and immunohistochemistry exhibited extracellular matrix deposition throughout the 3D structure. Glycosaminoglycans, and collagen types I and II were detected. However, stronger staining for collagen type II was observed when compared to collagen type I. The PGA constructs presented similar features toSPCLat the end of the 6 weeks. PGA constructs exhibited higher amounts of matrix glycosaminoglycans when compared to the SPCL scaffolds. However, we also observed a lack of tissue in the central area of the PGA scaffolds. Reasons for these occurrences may include inefficient cells penetration, necrosis due to high cell densities, or necrosis related with acidic by-products degradation. Such situation was not detected in the SPCL scaffolds, indicating the much better biocompatibility of the starch based scaffolds. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/20209 |
url |
http://hdl.handle.net/1822/20209 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0957-4530 1573-4838 10.1007/s10856-006-0692-7 17323161 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133084240576512 |