A domain specific language for domotic systems

Detalhes bibliográficos
Autor(a) principal: Taborda, João Pedro Gamito
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/14419
Resumo: To cope with modernity, the interesting of having a fully automated house has been increasing over the years, as technology evolves and as our lives become more stressful and overloaded. An automation system provides a way to simplify some daily tasks, allowing us to have more spare time to perform activities where we are really needed. There are some systems in this domain that try to implement these characteristics, but this kind of technology is at its early stages of evolution being that it is still far away of empowering the user with the desired control over a habitation. The reason is that the mentioned systems miss some important features such as adaptability, extension and evolution. These systems, developed from a bottom-up approach, are often tailored for programmers and domain experts, discarding most of the times the end users that remain with unfinished interfaces or products that they have difficulty to control. Moreover, complex behaviors are avoided, since they are extremely difficult to implement mostly due to the necessity of handling priorities, conflicts and device calibration. Besides, these solutions are only reachable at very high costs, yet they still have the limitation of being difficult to configure by non-technical people once in runtime operation. As a result, it is necessary to create a tool that allows the execution of several automated actions, with an interface that is easy to use but at the same time supports all the main features of this domain. It is also desirable that this tool is independent of the hardware so it can be reused, thus a Model Driven Development approach (MDD) is the ideal option, as it is a method that follows those principles. Since the automation domain has some very specific concepts, the use of models should be combined with a Domain Specific Language (DSL). With these two methods, it is possible to create a solution that is adapted to the end users, but also to domain experts and programmers due to the several levels of abstraction that can be added to diminish the complexity of use. The aim of this thesis is to design a Domain Specific Language (DSL) that uses the Model Driven Development approach (MDD), with the purpose of supporting Home Automation (HA) concepts. In this implementation, the development of simple and complex scenarios should be supported and will be one of the most important concerns. This DSL should also support other significant features in this domain, such as the ability to schedule tasks, which is something that is limited in the current existing solutions.
id RCAP_61f0d7f154c66ab26f0f0d9a442477c8
oai_identifier_str oai:run.unl.pt:10362/14419
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A domain specific language for domotic systemsHome automationDomoticAutomated systemsAutomation scenariosDomain specific languagesModel driven developmentTo cope with modernity, the interesting of having a fully automated house has been increasing over the years, as technology evolves and as our lives become more stressful and overloaded. An automation system provides a way to simplify some daily tasks, allowing us to have more spare time to perform activities where we are really needed. There are some systems in this domain that try to implement these characteristics, but this kind of technology is at its early stages of evolution being that it is still far away of empowering the user with the desired control over a habitation. The reason is that the mentioned systems miss some important features such as adaptability, extension and evolution. These systems, developed from a bottom-up approach, are often tailored for programmers and domain experts, discarding most of the times the end users that remain with unfinished interfaces or products that they have difficulty to control. Moreover, complex behaviors are avoided, since they are extremely difficult to implement mostly due to the necessity of handling priorities, conflicts and device calibration. Besides, these solutions are only reachable at very high costs, yet they still have the limitation of being difficult to configure by non-technical people once in runtime operation. As a result, it is necessary to create a tool that allows the execution of several automated actions, with an interface that is easy to use but at the same time supports all the main features of this domain. It is also desirable that this tool is independent of the hardware so it can be reused, thus a Model Driven Development approach (MDD) is the ideal option, as it is a method that follows those principles. Since the automation domain has some very specific concepts, the use of models should be combined with a Domain Specific Language (DSL). With these two methods, it is possible to create a solution that is adapted to the end users, but also to domain experts and programmers due to the several levels of abstraction that can be added to diminish the complexity of use. The aim of this thesis is to design a Domain Specific Language (DSL) that uses the Model Driven Development approach (MDD), with the purpose of supporting Home Automation (HA) concepts. In this implementation, the development of simple and complex scenarios should be supported and will be one of the most important concerns. This DSL should also support other significant features in this domain, such as the ability to schedule tasks, which is something that is limited in the current existing solutions.Amaral, VascoCarreira, PauloRUNTaborda, João Pedro Gamito2015-03-03T17:21:47Z2014-092015-032014-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/14419enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:49:33Zoai:run.unl.pt:10362/14419Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:21:48.829858Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A domain specific language for domotic systems
title A domain specific language for domotic systems
spellingShingle A domain specific language for domotic systems
Taborda, João Pedro Gamito
Home automation
Domotic
Automated systems
Automation scenarios
Domain specific languages
Model driven development
title_short A domain specific language for domotic systems
title_full A domain specific language for domotic systems
title_fullStr A domain specific language for domotic systems
title_full_unstemmed A domain specific language for domotic systems
title_sort A domain specific language for domotic systems
author Taborda, João Pedro Gamito
author_facet Taborda, João Pedro Gamito
author_role author
dc.contributor.none.fl_str_mv Amaral, Vasco
Carreira, Paulo
RUN
dc.contributor.author.fl_str_mv Taborda, João Pedro Gamito
dc.subject.por.fl_str_mv Home automation
Domotic
Automated systems
Automation scenarios
Domain specific languages
Model driven development
topic Home automation
Domotic
Automated systems
Automation scenarios
Domain specific languages
Model driven development
description To cope with modernity, the interesting of having a fully automated house has been increasing over the years, as technology evolves and as our lives become more stressful and overloaded. An automation system provides a way to simplify some daily tasks, allowing us to have more spare time to perform activities where we are really needed. There are some systems in this domain that try to implement these characteristics, but this kind of technology is at its early stages of evolution being that it is still far away of empowering the user with the desired control over a habitation. The reason is that the mentioned systems miss some important features such as adaptability, extension and evolution. These systems, developed from a bottom-up approach, are often tailored for programmers and domain experts, discarding most of the times the end users that remain with unfinished interfaces or products that they have difficulty to control. Moreover, complex behaviors are avoided, since they are extremely difficult to implement mostly due to the necessity of handling priorities, conflicts and device calibration. Besides, these solutions are only reachable at very high costs, yet they still have the limitation of being difficult to configure by non-technical people once in runtime operation. As a result, it is necessary to create a tool that allows the execution of several automated actions, with an interface that is easy to use but at the same time supports all the main features of this domain. It is also desirable that this tool is independent of the hardware so it can be reused, thus a Model Driven Development approach (MDD) is the ideal option, as it is a method that follows those principles. Since the automation domain has some very specific concepts, the use of models should be combined with a Domain Specific Language (DSL). With these two methods, it is possible to create a solution that is adapted to the end users, but also to domain experts and programmers due to the several levels of abstraction that can be added to diminish the complexity of use. The aim of this thesis is to design a Domain Specific Language (DSL) that uses the Model Driven Development approach (MDD), with the purpose of supporting Home Automation (HA) concepts. In this implementation, the development of simple and complex scenarios should be supported and will be one of the most important concerns. This DSL should also support other significant features in this domain, such as the ability to schedule tasks, which is something that is limited in the current existing solutions.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
2014-09-01T00:00:00Z
2015-03-03T17:21:47Z
2015-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/14419
url http://hdl.handle.net/10362/14419
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137858098823168