Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus

Detalhes bibliográficos
Autor(a) principal: Diamantino, Rodrigo Miguel Folgado
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/160306
Resumo: With CO2 and plastic waste rising globally, developing a method that allows CO2 capture and its transformation into biodegradable polymers is an appealing prospect. One organism capable of such feature is Chloroflexus aurantiacus, a filamentous anoxygenic bacteria that presents a very versatile metabolism. This extremophile is capable of using solar energy for CO2 fixation and adverse components as electron donors (e.g., hydrogen sulphide), to produce polyhydroxyalkanoates (PHA) and accumulate them as internal reserves. PHAs are microbially synthesized polyesters that offer a wide range of properties, similar to petrochemical plastics, yet are fully biobased, biodegradable, and more biocompatible than conventional polymers. In this work we plan to outlay a possible alternative to the conventional methods of PHA production, using CO2 capture and hydrogen sulphide removal by C. aurantiacus Y-400-fl (DSM 637) to provide a path for a sustainable and inexpensive PHA production process. Hopefully, this work will contribute to lower PHA production costs, and thus make it viable for new markets. In this work the growth of C. aurantiacus Y-400-fl (DSM 637) was optimized in lab conditions, analysing its response to variations in the culture medium composition, which impacted the overall behaviour of the organism and its polymer production, both in quantity and monomeric composition of the PHA produced. In the course of this thesis C. aurantiacus Y-400-fl (DSM 637) was grown under several different media, with different carbon sources (glycylglycine, glycine and sodium carbonate), sulphide concentrations from 0.078 mM to 0.625 mM and with light intensities from 0.58 to 4.4 W/l. The results showed that C. aurantiacus Y-400-fl (DSM 637) has an ideal sulphide concentration of around 0.313 mM when waking up and maintaining growth using organic carbon sources (glycylglycine), that it is a fast adapting organism, that shows similar growth profiles regardless of whether its inoculum was grown under a low or high light intensity, that the bacteria is able to assimilate inorganic carbon (Na2CO3) and grow normally without the presence of glycylglycine, and that under organic carbon conditions it’s possible to replace the expensive glycylglycine with glycine, without affecting the organism’s growth profile. Grown under anaerobic conditions with continuous illumination, C. aurantiacus Y-400-fl (DSM 637), was able to achieve 15% PHA content per cell dry weight when fed with an organic carbon substrate (glycylglycine). Preliminary tests to evaluate C. aurantiacus growth on inorganic carbon-based medium resulted in low PHA content, indicating the importance of future tests to target operation under ideal accumulation conditions (e.g., nutrient limitation, adjusted sulphide concentrations.
id RCAP_62bab0cb68ee327d7a5361e542c0e05a
oai_identifier_str oai:run.unl.pt:10362/160306
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacusDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasWith CO2 and plastic waste rising globally, developing a method that allows CO2 capture and its transformation into biodegradable polymers is an appealing prospect. One organism capable of such feature is Chloroflexus aurantiacus, a filamentous anoxygenic bacteria that presents a very versatile metabolism. This extremophile is capable of using solar energy for CO2 fixation and adverse components as electron donors (e.g., hydrogen sulphide), to produce polyhydroxyalkanoates (PHA) and accumulate them as internal reserves. PHAs are microbially synthesized polyesters that offer a wide range of properties, similar to petrochemical plastics, yet are fully biobased, biodegradable, and more biocompatible than conventional polymers. In this work we plan to outlay a possible alternative to the conventional methods of PHA production, using CO2 capture and hydrogen sulphide removal by C. aurantiacus Y-400-fl (DSM 637) to provide a path for a sustainable and inexpensive PHA production process. Hopefully, this work will contribute to lower PHA production costs, and thus make it viable for new markets. In this work the growth of C. aurantiacus Y-400-fl (DSM 637) was optimized in lab conditions, analysing its response to variations in the culture medium composition, which impacted the overall behaviour of the organism and its polymer production, both in quantity and monomeric composition of the PHA produced. In the course of this thesis C. aurantiacus Y-400-fl (DSM 637) was grown under several different media, with different carbon sources (glycylglycine, glycine and sodium carbonate), sulphide concentrations from 0.078 mM to 0.625 mM and with light intensities from 0.58 to 4.4 W/l. The results showed that C. aurantiacus Y-400-fl (DSM 637) has an ideal sulphide concentration of around 0.313 mM when waking up and maintaining growth using organic carbon sources (glycylglycine), that it is a fast adapting organism, that shows similar growth profiles regardless of whether its inoculum was grown under a low or high light intensity, that the bacteria is able to assimilate inorganic carbon (Na2CO3) and grow normally without the presence of glycylglycine, and that under organic carbon conditions it’s possible to replace the expensive glycylglycine with glycine, without affecting the organism’s growth profile. Grown under anaerobic conditions with continuous illumination, C. aurantiacus Y-400-fl (DSM 637), was able to achieve 15% PHA content per cell dry weight when fed with an organic carbon substrate (glycylglycine). Preliminary tests to evaluate C. aurantiacus growth on inorganic carbon-based medium resulted in low PHA content, indicating the importance of future tests to target operation under ideal accumulation conditions (e.g., nutrient limitation, adjusted sulphide concentrations.Com os níveis de CO2 e os resíduos de plástico a aumentar globalmente, desenvolver um método que permita a captura de CO2 e a sua transformação em polímeros biodegradáveis é uma perspetiva apelativa. Um organismo capaz de tal é Chloroflexus Aurantiacus, uma bactéria filamentosa anoxigénica que apresenta um metabolismo muito versátil. Este extremófilo é capaz de utilizar energia solar para a fixação de CO2 e compostos adversos como dadores de eletrões (p. ex.: sulfureto de hidrogénio) para produzir polihidroxialcanoatos (PHA) e acumulá-los como reservas internas. Os PHAs são poliésteres sintetizados microbialmente que oferecem uma larga gama de propriedades, semelhante aos plásticos petroquímicos, no entanto são completamente biobaseados, biodegradáveis e mais biocompatíveis do que os polímeros convencionais. Neste trabalho planeamos elaborar uma possível alternativa aos métodos convencionais de produção de PHAs, utilizando captura de CO2 e remoção de sulfureto de hidrogénio por C. aurantiacus Y-400-fl (DSM 637) para providenciar um caminho para um processo sustentável e acessível para a produção de PHA. Com esperança, este trabalho contribuirá para baixar os custos de produção de PHA, e assim torná-los viáveis para novos mercados. Neste trabalho o crescimento de C. aurantiacus foi otimizado em condições de laboratório, analisando a sua resposta a variações na composição do meio de cultura, cujo impacto se fez sentir tanto no comportamento do organismo em si, como na produção de polímeros, tanto a quantidade deste, como a sua composição monomérica. Os resultados demonstraram que 0.625 mM de sulfuretos é a concentração ideal para acordar e manter o crescimento com fontes orgânicas de carbono(glicilglicina) em C. aurantiacus Y-400-fl (DSM 637). Demonstramos também que C. aurantiacus Y-400-fl (DSM 637) é um organismo de adaptação rápida, que demonstra um perfil de crescimento semelhante independentemente de ser inoculado de uma cultura crescida em baixa ou alta intensidade de luz. Mostramos ainda que C. aurantiacus Y-400-fl (DSM 637) é capaz de assimilar carbono inorgânico (Na2CO3) sem a presença de glicilglicina, e que em condições de crescimento orgânico é possível substituir a dispendiosa glicilglicina com glicina sem afetar o perfil de crescimento substancialmente. Crescida em condições anaeróbicas com iluminação continua C. aurantiacus Y-400-fi (DSM 637) consegui atingir 15% de teor de PHA por peso seco total quando alimentada com um substrato de carbono orgânico (glicilglicina). Testes preliminares para avaliar o crescimento de C. aurantiacus Y- 400-fl (DSM 637) em meio com fonte de carbono inorgânica (Na2CO3) resultaram em baixas quantidades de PHA acumulados, indicando a importância de futuros testes para alcançar as ideais condições de acumulação (p. ex.: limitação de nutrientes, ajustes de concentração de sulfureto).Fradinho, JoanaTorres, CristianaRUNDiamantino, Rodrigo Miguel Folgado2023-11-22T19:18:27Z2023-062023-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160306enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:42:56Zoai:run.unl.pt:10362/160306Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:58.308762Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus
title Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus
spellingShingle Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus
Diamantino, Rodrigo Miguel Folgado
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus
title_full Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus
title_fullStr Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus
title_full_unstemmed Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus
title_sort Exploring CO2 as feedstock for production of biopolymers by the bacteria Chloroflexus aurantiacus
author Diamantino, Rodrigo Miguel Folgado
author_facet Diamantino, Rodrigo Miguel Folgado
author_role author
dc.contributor.none.fl_str_mv Fradinho, Joana
Torres, Cristiana
RUN
dc.contributor.author.fl_str_mv Diamantino, Rodrigo Miguel Folgado
dc.subject.por.fl_str_mv Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description With CO2 and plastic waste rising globally, developing a method that allows CO2 capture and its transformation into biodegradable polymers is an appealing prospect. One organism capable of such feature is Chloroflexus aurantiacus, a filamentous anoxygenic bacteria that presents a very versatile metabolism. This extremophile is capable of using solar energy for CO2 fixation and adverse components as electron donors (e.g., hydrogen sulphide), to produce polyhydroxyalkanoates (PHA) and accumulate them as internal reserves. PHAs are microbially synthesized polyesters that offer a wide range of properties, similar to petrochemical plastics, yet are fully biobased, biodegradable, and more biocompatible than conventional polymers. In this work we plan to outlay a possible alternative to the conventional methods of PHA production, using CO2 capture and hydrogen sulphide removal by C. aurantiacus Y-400-fl (DSM 637) to provide a path for a sustainable and inexpensive PHA production process. Hopefully, this work will contribute to lower PHA production costs, and thus make it viable for new markets. In this work the growth of C. aurantiacus Y-400-fl (DSM 637) was optimized in lab conditions, analysing its response to variations in the culture medium composition, which impacted the overall behaviour of the organism and its polymer production, both in quantity and monomeric composition of the PHA produced. In the course of this thesis C. aurantiacus Y-400-fl (DSM 637) was grown under several different media, with different carbon sources (glycylglycine, glycine and sodium carbonate), sulphide concentrations from 0.078 mM to 0.625 mM and with light intensities from 0.58 to 4.4 W/l. The results showed that C. aurantiacus Y-400-fl (DSM 637) has an ideal sulphide concentration of around 0.313 mM when waking up and maintaining growth using organic carbon sources (glycylglycine), that it is a fast adapting organism, that shows similar growth profiles regardless of whether its inoculum was grown under a low or high light intensity, that the bacteria is able to assimilate inorganic carbon (Na2CO3) and grow normally without the presence of glycylglycine, and that under organic carbon conditions it’s possible to replace the expensive glycylglycine with glycine, without affecting the organism’s growth profile. Grown under anaerobic conditions with continuous illumination, C. aurantiacus Y-400-fl (DSM 637), was able to achieve 15% PHA content per cell dry weight when fed with an organic carbon substrate (glycylglycine). Preliminary tests to evaluate C. aurantiacus growth on inorganic carbon-based medium resulted in low PHA content, indicating the importance of future tests to target operation under ideal accumulation conditions (e.g., nutrient limitation, adjusted sulphide concentrations.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-22T19:18:27Z
2023-06
2023-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/160306
url http://hdl.handle.net/10362/160306
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138161583980544