Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response

Detalhes bibliográficos
Autor(a) principal: Capela-Pires, J
Data de Publicação: 2013
Outros Autores: Ferreira, Rui, Alves-Pereira, Isabel
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/9937
Resumo: physicochemical properties are poorly known. In the case of metal nanoparticles, their dimension is often important, since their surface area increases as molecular size decreases, causing alterations in their magnetic and thermodynamic properties. Consequently, the influence they exert on life is an attractive topic of research in biochemical toxicology by the novelty of their behavior. Although titanium dioxide (TiO2) has been used over the years as inert substance as drugs additive or cosmetics products, there are scarces studies about biological effects of titanium dioxide nanoparticles (TiO2-NP) in eukaryotic cells. Therefore the aim of this study was to evaluate how TiO2-NP with molecular size between 50 and 100 nm affect cell proliferation and antioxidant capacity of unicellular eukaryote Saccharomyces cerevisiae. S. cerevisiae BY4741 belonging to the Eurocast collection growing at mid exponential phase in liquid YEPD medium with 2 % (w/v) glucose, at 25 ºC, were exposed during 200 min to 0.1 or 1.0 µg/mL of TiO2-NP, previously prepared by sonication, at same temperature conditions. Samples of each treatment were used to obtain the post-12000 g supernatant for proteins contents (Lowry, 1951), antioxidant power (DPPH) (Brand-Wiliam, 1995), ALP (Bretaudiere, 1984) and LOX (Gata, 1996) activities determination. The post-12000 g pellet has been also used to determine the protein content and CAT A (Lushachak, 2005; Todorova, 2006) activity. The results show that TiO2-NP caused a significant decrease of antioxidant power (DPPH), ALP and CAT A activities, as well as a significant increase in LOX activity (p < 0.05). This response profile suggest that proliferative ability of BY4741 yeast strain, at 25ºC, is strongly disturbed by 0.1 or 1.0 µg/mL TiO2-NP exposition, probably due a decrease in antioxidant ability to scavenger free radicals estimated by DPPH or glutathione, and peroxisomal catalases.
id RCAP_62fe43a842f4a6b068600ba646bdddc5
oai_identifier_str oai:dspace.uevora.pt:10174/9937
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant responsealkaline phosphataseLOXCatalase Aphysicochemical properties are poorly known. In the case of metal nanoparticles, their dimension is often important, since their surface area increases as molecular size decreases, causing alterations in their magnetic and thermodynamic properties. Consequently, the influence they exert on life is an attractive topic of research in biochemical toxicology by the novelty of their behavior. Although titanium dioxide (TiO2) has been used over the years as inert substance as drugs additive or cosmetics products, there are scarces studies about biological effects of titanium dioxide nanoparticles (TiO2-NP) in eukaryotic cells. Therefore the aim of this study was to evaluate how TiO2-NP with molecular size between 50 and 100 nm affect cell proliferation and antioxidant capacity of unicellular eukaryote Saccharomyces cerevisiae. S. cerevisiae BY4741 belonging to the Eurocast collection growing at mid exponential phase in liquid YEPD medium with 2 % (w/v) glucose, at 25 ºC, were exposed during 200 min to 0.1 or 1.0 µg/mL of TiO2-NP, previously prepared by sonication, at same temperature conditions. Samples of each treatment were used to obtain the post-12000 g supernatant for proteins contents (Lowry, 1951), antioxidant power (DPPH) (Brand-Wiliam, 1995), ALP (Bretaudiere, 1984) and LOX (Gata, 1996) activities determination. The post-12000 g pellet has been also used to determine the protein content and CAT A (Lushachak, 2005; Todorova, 2006) activity. The results show that TiO2-NP caused a significant decrease of antioxidant power (DPPH), ALP and CAT A activities, as well as a significant increase in LOX activity (p < 0.05). This response profile suggest that proliferative ability of BY4741 yeast strain, at 25ºC, is strongly disturbed by 0.1 or 1.0 µg/mL TiO2-NP exposition, probably due a decrease in antioxidant ability to scavenger free radicals estimated by DPPH or glutathione, and peroxisomal catalases.2014-01-23T12:11:05Z2014-01-232013-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/9937http://hdl.handle.net/10174/9937engCapela-Pires J, Ferreira R, Alves-Pereira I (2013) Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response, ISPROF 2013 – Book of abstracts, Costa de Caparica, PortugalsimnaonaoQUI- Comunicações - Em Congressos Científicos Internacionaisjmcp@uevora.ptraf@uevora.ptiap@uevora.pt548Capela-Pires, JFerreira, RuiAlves-Pereira, Isabelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:52:21Zoai:dspace.uevora.pt:10174/9937Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:03:55.717140Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response
title Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response
spellingShingle Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response
Capela-Pires, J
alkaline phosphatase
LOX
Catalase A
title_short Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response
title_full Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response
title_fullStr Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response
title_full_unstemmed Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response
title_sort Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response
author Capela-Pires, J
author_facet Capela-Pires, J
Ferreira, Rui
Alves-Pereira, Isabel
author_role author
author2 Ferreira, Rui
Alves-Pereira, Isabel
author2_role author
author
dc.contributor.author.fl_str_mv Capela-Pires, J
Ferreira, Rui
Alves-Pereira, Isabel
dc.subject.por.fl_str_mv alkaline phosphatase
LOX
Catalase A
topic alkaline phosphatase
LOX
Catalase A
description physicochemical properties are poorly known. In the case of metal nanoparticles, their dimension is often important, since their surface area increases as molecular size decreases, causing alterations in their magnetic and thermodynamic properties. Consequently, the influence they exert on life is an attractive topic of research in biochemical toxicology by the novelty of their behavior. Although titanium dioxide (TiO2) has been used over the years as inert substance as drugs additive or cosmetics products, there are scarces studies about biological effects of titanium dioxide nanoparticles (TiO2-NP) in eukaryotic cells. Therefore the aim of this study was to evaluate how TiO2-NP with molecular size between 50 and 100 nm affect cell proliferation and antioxidant capacity of unicellular eukaryote Saccharomyces cerevisiae. S. cerevisiae BY4741 belonging to the Eurocast collection growing at mid exponential phase in liquid YEPD medium with 2 % (w/v) glucose, at 25 ºC, were exposed during 200 min to 0.1 or 1.0 µg/mL of TiO2-NP, previously prepared by sonication, at same temperature conditions. Samples of each treatment were used to obtain the post-12000 g supernatant for proteins contents (Lowry, 1951), antioxidant power (DPPH) (Brand-Wiliam, 1995), ALP (Bretaudiere, 1984) and LOX (Gata, 1996) activities determination. The post-12000 g pellet has been also used to determine the protein content and CAT A (Lushachak, 2005; Todorova, 2006) activity. The results show that TiO2-NP caused a significant decrease of antioxidant power (DPPH), ALP and CAT A activities, as well as a significant increase in LOX activity (p < 0.05). This response profile suggest that proliferative ability of BY4741 yeast strain, at 25ºC, is strongly disturbed by 0.1 or 1.0 µg/mL TiO2-NP exposition, probably due a decrease in antioxidant ability to scavenger free radicals estimated by DPPH or glutathione, and peroxisomal catalases.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-01T00:00:00Z
2014-01-23T12:11:05Z
2014-01-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/9937
http://hdl.handle.net/10174/9937
url http://hdl.handle.net/10174/9937
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Capela-Pires J, Ferreira R, Alves-Pereira I (2013) Titanium dioxide nanoparticles inhibits Saccharomyces cerevisiae BY4741 proliferation, modifying the profile of antioxidant response, ISPROF 2013 – Book of abstracts, Costa de Caparica, Portugal
sim
nao
nao
QUI- Comunicações - Em Congressos Científicos Internacionais
jmcp@uevora.pt
raf@uevora.pt
iap@uevora.pt
548
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136523066540032