Structural optimization using the finite element method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/17447 |
Resumo: | This work reports on the formulation of the conforming finite element method (FEM) and its application to structural optimization problems. The FEM is nowadays the most widely used technique for obtaining approximate solutions of complex engineering problems that cannot be solved analytically. The conforming finite element formulation can be reached using several approaches. One of the most general strategies is based on the weak-form of the equations governing the problem. However, rather than a pure mathematical approach, it is often more appealing to the structural engineer to reach the finite element formulation through more physically-meaningful strategies, such as the virtual work or the variational principle forms of the problem. All three of these strategies are briefly presented. One of the most important topics in the finite element theory is the quality of the solutions. The most commonly used method to increase the quality of a finite element solution is to increase of the number of elements used in the model (mesh refinement). In this work, two numerical examples are presented to illustrate the convergence of the finite element solutions under mesh refinement. An important application of the FEM and the focus of this work is the structural optimization. The purpose of the structural optimization is to minimize (or maximize) an objective function while respecting certain restrictions. The extremum of a continuous function on a certain interval can either correspond to a point where the gradient is null, or it may lay on the boundary of the interval. Several numerical methods for identifying null gradient points of a function are described in this work. When the extremum of a function lays on the boundary of its interval of definition, an effective minimization method should ensure that the boundaries are searched in such a way that every new iteration yields a result closer to the extremum than the one before. The basic aspects of the constrained minimization methods are briefly presented here and applied to two structural optimization problems, namely the size optimization of a bar subjected to its own weight and the topology optimization of a cantilever plate subjected to a concentrated load applied to its tip. A large scale practical example of structural optimization, consisting of the topological optimization of a wheel carrier of a motorsports car is also presented. The model is constructed using the finite element package MSC.-NASTRAN. The main goal of the optimization is to minimize the structural weight by reducing the amount of material used in order to create a new optimized design. The feasible optimized structure is analyzed and the obtained stresses and displacements are compared with the analysis results of the non-optimized structure. |
id |
RCAP_63d6cf50e1098896baea8714a2d13390 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/17447 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Structural optimization using the finite element methodFinite element methodStructural optimizationFunction minimizationMétodo dos Elementos FinitosOptimização estruturalMinimização de funçõesDomínio/Área Científica::Engenharia e Tecnologia::Engenharia CivilThis work reports on the formulation of the conforming finite element method (FEM) and its application to structural optimization problems. The FEM is nowadays the most widely used technique for obtaining approximate solutions of complex engineering problems that cannot be solved analytically. The conforming finite element formulation can be reached using several approaches. One of the most general strategies is based on the weak-form of the equations governing the problem. However, rather than a pure mathematical approach, it is often more appealing to the structural engineer to reach the finite element formulation through more physically-meaningful strategies, such as the virtual work or the variational principle forms of the problem. All three of these strategies are briefly presented. One of the most important topics in the finite element theory is the quality of the solutions. The most commonly used method to increase the quality of a finite element solution is to increase of the number of elements used in the model (mesh refinement). In this work, two numerical examples are presented to illustrate the convergence of the finite element solutions under mesh refinement. An important application of the FEM and the focus of this work is the structural optimization. The purpose of the structural optimization is to minimize (or maximize) an objective function while respecting certain restrictions. The extremum of a continuous function on a certain interval can either correspond to a point where the gradient is null, or it may lay on the boundary of the interval. Several numerical methods for identifying null gradient points of a function are described in this work. When the extremum of a function lays on the boundary of its interval of definition, an effective minimization method should ensure that the boundaries are searched in such a way that every new iteration yields a result closer to the extremum than the one before. The basic aspects of the constrained minimization methods are briefly presented here and applied to two structural optimization problems, namely the size optimization of a bar subjected to its own weight and the topology optimization of a cantilever plate subjected to a concentrated load applied to its tip. A large scale practical example of structural optimization, consisting of the topological optimization of a wheel carrier of a motorsports car is also presented. The model is constructed using the finite element package MSC.-NASTRAN. The main goal of the optimization is to minimize the structural weight by reducing the amount of material used in order to create a new optimized design. The feasible optimized structure is analyzed and the obtained stresses and displacements are compared with the analysis results of the non-optimized structure.Esta dissertação descreve a formulação do método dos elementos finitos compatíveis (FEM) e respectiva aplicação a problemas de optimização estrutural. O FEM é, hoje em dia, a técnica mais usada para obter soluções aproximadas em problemas complexos de engenharia que não podem ser resolvidos de forma analítica. A formulação do elemento finito compatível pode ser obtida através de diversas abordagens. Uma das estratégias mais gerais baseia-se na forma-fraca das equações governativas do problema. No entanto, em vez de uma abordagem puramente matemática, é geralmente mais apelativo para o engenheiro estrutural obter a formulação do elemento finito através de estratégias com maior significado físico, tais como o trabalho virtual ou os princípios variacionais. Um dos tópicos mais importantes na teoria dos elementos finitos é a qualidade das soluções. O método mais usado para aumentar a qualidade de uma solução obtida através do FEM é aumentar o número de elementos usados no modelo (refinamento da malha). Nesta dissertação, dois exemplos numéricos são apresentados de forma a ilustrar a convergência das soluções obtidas através do FEM em função do refinamento da malha. Uma aplicação importante do FEM e o foco desta dissertação é a optimização estrutural. O objectivo da optimização estrutural é minimizar (ou maximizar) uma função respeitando certas restrições. O extremo de uma função contínua num determinado intervalo pode corresponder a um ponto onde o gradiente é nulo ou situar-se na fronteira do intervalo. Vários métodos numéricos para identificação de pontos de gradiente nulo de uma função são descritos nesta dissertação. Quando o extremo de uma função se situa na fronteira do seu intervalo de definição, um método eficaz de minimização deve garantir que a procura do extremo nas fronteiras é feita de forma a que cada nova iteração produza resultados mais aproximados do extremo do que a iteração anterior. Os aspectos básicos dos métodos de minimização com restrições são sucintamente descritos nesta dissertação e aplicados em dois problemas de optimização estrutural, nomeadamente na optimização da área da secção de uma barra sujeita ao seu peso próprio e na optimização topológica de uma chapa em consola com uma carga aplicada na sua extremidade. Um exemplo prático de aplicação em larga escala da optimização estrutural, baseado na optimização topológica da estrutura de suporte da roda de um automóvel é também apresentado. O modelo é construído com recurso ao software de elementos finitos MSC.-NASTRAN. O principal objectivo da optimização é baseado na diminuição da massa através da redução da quantidade de material usado de forma a obter uma nova estrutura optimizada. A estrutura optimizada é analisada, sendo as tensões e deslocamentos obtidos comparados com os valores da análise efectuada na estrutura não-optimizada.Prißler, TimoMoldovan, Ionut DragosVeritati - Repositório Institucional da Universidade Católica PortuguesaMesquita, João Pedro Pires2015-05-05T13:15:44Z2014-03-1320122014-03-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/17447TID:203184904enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-14T01:35:46Zoai:repositorio.ucp.pt:10400.14/17447Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:14:39.079551Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Structural optimization using the finite element method |
title |
Structural optimization using the finite element method |
spellingShingle |
Structural optimization using the finite element method Mesquita, João Pedro Pires Finite element method Structural optimization Function minimization Método dos Elementos Finitos Optimização estrutural Minimização de funções Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
title_short |
Structural optimization using the finite element method |
title_full |
Structural optimization using the finite element method |
title_fullStr |
Structural optimization using the finite element method |
title_full_unstemmed |
Structural optimization using the finite element method |
title_sort |
Structural optimization using the finite element method |
author |
Mesquita, João Pedro Pires |
author_facet |
Mesquita, João Pedro Pires |
author_role |
author |
dc.contributor.none.fl_str_mv |
Prißler, Timo Moldovan, Ionut Dragos Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Mesquita, João Pedro Pires |
dc.subject.por.fl_str_mv |
Finite element method Structural optimization Function minimization Método dos Elementos Finitos Optimização estrutural Minimização de funções Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
topic |
Finite element method Structural optimization Function minimization Método dos Elementos Finitos Optimização estrutural Minimização de funções Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Civil |
description |
This work reports on the formulation of the conforming finite element method (FEM) and its application to structural optimization problems. The FEM is nowadays the most widely used technique for obtaining approximate solutions of complex engineering problems that cannot be solved analytically. The conforming finite element formulation can be reached using several approaches. One of the most general strategies is based on the weak-form of the equations governing the problem. However, rather than a pure mathematical approach, it is often more appealing to the structural engineer to reach the finite element formulation through more physically-meaningful strategies, such as the virtual work or the variational principle forms of the problem. All three of these strategies are briefly presented. One of the most important topics in the finite element theory is the quality of the solutions. The most commonly used method to increase the quality of a finite element solution is to increase of the number of elements used in the model (mesh refinement). In this work, two numerical examples are presented to illustrate the convergence of the finite element solutions under mesh refinement. An important application of the FEM and the focus of this work is the structural optimization. The purpose of the structural optimization is to minimize (or maximize) an objective function while respecting certain restrictions. The extremum of a continuous function on a certain interval can either correspond to a point where the gradient is null, or it may lay on the boundary of the interval. Several numerical methods for identifying null gradient points of a function are described in this work. When the extremum of a function lays on the boundary of its interval of definition, an effective minimization method should ensure that the boundaries are searched in such a way that every new iteration yields a result closer to the extremum than the one before. The basic aspects of the constrained minimization methods are briefly presented here and applied to two structural optimization problems, namely the size optimization of a bar subjected to its own weight and the topology optimization of a cantilever plate subjected to a concentrated load applied to its tip. A large scale practical example of structural optimization, consisting of the topological optimization of a wheel carrier of a motorsports car is also presented. The model is constructed using the finite element package MSC.-NASTRAN. The main goal of the optimization is to minimize the structural weight by reducing the amount of material used in order to create a new optimized design. The feasible optimized structure is analyzed and the obtained stresses and displacements are compared with the analysis results of the non-optimized structure. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2014-03-13 2014-03-13T00:00:00Z 2015-05-05T13:15:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/17447 TID:203184904 |
url |
http://hdl.handle.net/10400.14/17447 |
identifier_str_mv |
TID:203184904 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131824935403520 |