Social-media monitoring for cold-start recommendations

Detalhes bibliográficos
Autor(a) principal: Santos, João Manuel Espada dos
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/14826
Resumo: Generating personalized movie recommendations to users is a problem that most commonly relies on user-movie ratings. These ratings are generally used either to understand the user preferences or to recommend movies that users with similar rating patterns have rated highly. However, movie recommenders are often subject to the Cold-Start problem: new movies have not been rated by anyone, so, they will not be recommended to anyone; likewise, the preferences of new users who have not rated any movie cannot be learned. In parallel, Social-Media platforms, such as Twitter, collect great amounts of user feedback on movies, as these are very popular nowadays. This thesis proposes to explore feedback shared on Twitter to predict the popularity of new movies and show how it can be used to tackle the Cold-Start problem. It also proposes, at a finer grain, to explore the reputation of directors and actors on IMDb to tackle the Cold-Start problem. To assess these aspects, a Reputation-enhanced Recommendation Algorithm is implemented and evaluated on a crawled IMDb dataset with previous user ratings of old movies,together with Twitter data crawled from January 2014 to March 2014, to recommend 60 movies affected by the Cold-Start problem. Twitter revealed to be a strong reputation predictor, and the Reputation-enhanced Recommendation Algorithm improved over several baseline methods. Additionally, the algorithm also proved to be useful when recommending movies in an extreme Cold-Start scenario, where both new movies and users are affected by the Cold-Start problem.
id RCAP_640eae73aa0500c9a93509f8396ab041
oai_identifier_str oai:run.unl.pt:10362/14826
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Social-media monitoring for cold-start recommendationsSocial-MediaRecommender systemsMedia monitoringSentiment analysisCrowdsourcingCold-startGenerating personalized movie recommendations to users is a problem that most commonly relies on user-movie ratings. These ratings are generally used either to understand the user preferences or to recommend movies that users with similar rating patterns have rated highly. However, movie recommenders are often subject to the Cold-Start problem: new movies have not been rated by anyone, so, they will not be recommended to anyone; likewise, the preferences of new users who have not rated any movie cannot be learned. In parallel, Social-Media platforms, such as Twitter, collect great amounts of user feedback on movies, as these are very popular nowadays. This thesis proposes to explore feedback shared on Twitter to predict the popularity of new movies and show how it can be used to tackle the Cold-Start problem. It also proposes, at a finer grain, to explore the reputation of directors and actors on IMDb to tackle the Cold-Start problem. To assess these aspects, a Reputation-enhanced Recommendation Algorithm is implemented and evaluated on a crawled IMDb dataset with previous user ratings of old movies,together with Twitter data crawled from January 2014 to March 2014, to recommend 60 movies affected by the Cold-Start problem. Twitter revealed to be a strong reputation predictor, and the Reputation-enhanced Recommendation Algorithm improved over several baseline methods. Additionally, the algorithm also proved to be useful when recommending movies in an extreme Cold-Start scenario, where both new movies and users are affected by the Cold-Start problem.Magalhães, JoãoRUNSantos, João Manuel Espada dos2015-04-27T10:26:03Z2014-112015-042014-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/14826enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:50:11Zoai:run.unl.pt:10362/14826Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:22:06.792500Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Social-media monitoring for cold-start recommendations
title Social-media monitoring for cold-start recommendations
spellingShingle Social-media monitoring for cold-start recommendations
Santos, João Manuel Espada dos
Social-Media
Recommender systems
Media monitoring
Sentiment analysis
Crowdsourcing
Cold-start
title_short Social-media monitoring for cold-start recommendations
title_full Social-media monitoring for cold-start recommendations
title_fullStr Social-media monitoring for cold-start recommendations
title_full_unstemmed Social-media monitoring for cold-start recommendations
title_sort Social-media monitoring for cold-start recommendations
author Santos, João Manuel Espada dos
author_facet Santos, João Manuel Espada dos
author_role author
dc.contributor.none.fl_str_mv Magalhães, João
RUN
dc.contributor.author.fl_str_mv Santos, João Manuel Espada dos
dc.subject.por.fl_str_mv Social-Media
Recommender systems
Media monitoring
Sentiment analysis
Crowdsourcing
Cold-start
topic Social-Media
Recommender systems
Media monitoring
Sentiment analysis
Crowdsourcing
Cold-start
description Generating personalized movie recommendations to users is a problem that most commonly relies on user-movie ratings. These ratings are generally used either to understand the user preferences or to recommend movies that users with similar rating patterns have rated highly. However, movie recommenders are often subject to the Cold-Start problem: new movies have not been rated by anyone, so, they will not be recommended to anyone; likewise, the preferences of new users who have not rated any movie cannot be learned. In parallel, Social-Media platforms, such as Twitter, collect great amounts of user feedback on movies, as these are very popular nowadays. This thesis proposes to explore feedback shared on Twitter to predict the popularity of new movies and show how it can be used to tackle the Cold-Start problem. It also proposes, at a finer grain, to explore the reputation of directors and actors on IMDb to tackle the Cold-Start problem. To assess these aspects, a Reputation-enhanced Recommendation Algorithm is implemented and evaluated on a crawled IMDb dataset with previous user ratings of old movies,together with Twitter data crawled from January 2014 to March 2014, to recommend 60 movies affected by the Cold-Start problem. Twitter revealed to be a strong reputation predictor, and the Reputation-enhanced Recommendation Algorithm improved over several baseline methods. Additionally, the algorithm also proved to be useful when recommending movies in an extreme Cold-Start scenario, where both new movies and users are affected by the Cold-Start problem.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
2014-11-01T00:00:00Z
2015-04-27T10:26:03Z
2015-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/14826
url http://hdl.handle.net/10362/14826
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137860792614912