Assessing and improving recommender systems to deal with user cold-start problem

Detalhes bibliográficos
Autor(a) principal: Paixão, Crícia Zilda Felício
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/18778
http://dx.doi.org/10.14393/ufu.te.2017.66
Resumo: Recommender systems are in our everyday life. The recommendation methods have as main purpose to predict preferences for new items based on userŠs past preferences. The research related to this topic seeks among other things to discuss user cold-start problem, which is the challenge of recommending to users with few or no preferences records. One way to address cold-start issues is to infer the missing data relying on side information. Side information of different types has been explored in researches. Some studies use social information combined with usersŠ preferences, others user click behavior, location-based information, userŠs visual perception, contextual information, etc. The typical approach is to use side information to build one prediction model for each cold user. Due to the inherent complexity of this prediction process, for full cold-start user in particular, the performance of most recommender systems falls a great deal. We, rather, propose that cold users are best served by models already built in system. In this thesis we propose 4 approaches to deal with user cold-start problem using existing models available for analysis in the recommender systems. We cover the follow aspects: o Embedding social information into traditional recommender systems: We investigate the role of several social metrics on pairwise preference recommendations and provide the Ąrst steps towards a general framework to incorporate social information in traditional approaches. o Improving recommendation with visual perception similarities: We extract networks connecting users with similar visual perception and use them to come up with prediction models that maximize the information gained from cold users. o Analyzing the beneĄts of general framework to incorporate networked information into recommender systems: Representing different types of side information as a user network, we investigated how to incorporate networked information into recommender systems to understand the beneĄts of it in the context of cold user recommendation. o Analyzing the impact of prediction model selection for cold users: The last proposal consider that without side information the system will recommend to cold users based on the switch of models already built in system. We evaluated the proposed approaches in terms of prediction quality and ranking quality in real-world datasets under different recommendation domains. The experiments showed that our approaches achieve better results than the comparison methods.
id UFU_723ec41115c4bdff03319978986a4f87
oai_identifier_str oai:repositorio.ufu.br:123456789/18778
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Assessing and improving recommender systems to deal with user cold-start problemComputaçãoPercepção visualUsuários da internetSistemas de recomendação socialSistema de recomendaçãoPreferências dos usuáriosProblema do cold-start do usuárioMulti-armed banditsRecommender systemUser preferencesCold-start user problemSocial recommender systemsVisual perceptionCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORecommender systems are in our everyday life. The recommendation methods have as main purpose to predict preferences for new items based on userŠs past preferences. The research related to this topic seeks among other things to discuss user cold-start problem, which is the challenge of recommending to users with few or no preferences records. One way to address cold-start issues is to infer the missing data relying on side information. Side information of different types has been explored in researches. Some studies use social information combined with usersŠ preferences, others user click behavior, location-based information, userŠs visual perception, contextual information, etc. The typical approach is to use side information to build one prediction model for each cold user. Due to the inherent complexity of this prediction process, for full cold-start user in particular, the performance of most recommender systems falls a great deal. We, rather, propose that cold users are best served by models already built in system. In this thesis we propose 4 approaches to deal with user cold-start problem using existing models available for analysis in the recommender systems. We cover the follow aspects: o Embedding social information into traditional recommender systems: We investigate the role of several social metrics on pairwise preference recommendations and provide the Ąrst steps towards a general framework to incorporate social information in traditional approaches. o Improving recommendation with visual perception similarities: We extract networks connecting users with similar visual perception and use them to come up with prediction models that maximize the information gained from cold users. o Analyzing the beneĄts of general framework to incorporate networked information into recommender systems: Representing different types of side information as a user network, we investigated how to incorporate networked information into recommender systems to understand the beneĄts of it in the context of cold user recommendation. o Analyzing the impact of prediction model selection for cold users: The last proposal consider that without side information the system will recommend to cold users based on the switch of models already built in system. We evaluated the proposed approaches in terms of prediction quality and ranking quality in real-world datasets under different recommendation domains. The experiments showed that our approaches achieve better results than the comparison methods.Tese (Doutorado)Sistemas de recomendação fazem parte do nosso dia-a-dia. Os métodos usados nesses sistemas tem como objetivo principal predizer as preferências por novos itens baseado no perĄl do usuário. As pesquisas relacionadas a esse tópico procuram entre outras coisas tratar o problema do cold-start do usuário, que é o desaĄo de recomendar itens para usuários que possuem poucos ou nenhum registro de preferências no sistema. Uma forma de tratar o cold-start do usuário é buscar inferir as preferências dos usuários a partir de informações adicionais. Dessa forma, informações adicionais de diferentes tipos podem ser exploradas nas pesquisas. Alguns estudos usam informação social combinada com preferências dos usuários, outros se baseiam nos clicks ao navegar por sites Web, informação de localização geográĄca, percepção visual, informação de contexto, etc. A abordagem típica desses sistemas é usar informação adicional para construir um modelo de predição para cada usuário. Além desse processo ser mais complexo, para usuários full cold-start (sem preferências identiĄcadas pelo sistema) em particular, a maioria dos sistemas de recomendação apresentam um baixo desempenho. O trabalho aqui apresentado, por outro lado, propõe que novos usuários receberão recomendações mais acuradas de modelos de predição que já existem no sistema. Nesta tese foram propostas 4 abordagens para lidar com o problema de cold-start do usuário usando modelos existentes nos sistemas de recomendação. As abordagens apresentadas trataram os seguintes aspectos: o Inclusão de informação social em sistemas de recomendação tradicional: foram investigados os papéis de várias métricas sociais em um sistema de recomendação de preferências pairwise fornecendo subsidíos para a deĄnição de um framework geral para incluir informação social em abordagens tradicionais. o Uso de similaridade por percepção visual: usando a similaridade por percepção visual foram inferidas redes, conectando usuários similares, para serem usadas na seleção de modelos de predição para novos usuários. o Análise dos benefícios de um framework geral para incluir informação de redes de usuários em sistemas de recomendação: representando diferentes tipos de informação adicional como uma rede de usuários, foi investigado como as redes de usuários podem ser incluídas nos sistemas de recomendação de maneira a beneĄciar a recomendação para usuários cold-start. o Análise do impacto da seleção de modelos de predição para usuários cold-start: a última abordagem proposta considerou que sem a informação adicional o sistema poderia recomendar para novos usuários fazendo a troca entre os modelos já existentes no sistema e procurando aprender qual seria o mais adequado para a recomendação. As abordagens propostas foram avaliadas em termos da qualidade da predição e da qualidade do ranking em banco de dados reais e de diferentes domínios. Os resultados obtidos demonstraram que as abordagens propostas atingiram melhores resultados que os métodos do estado da arte.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Ciência da ComputaçãoPreux, PhilippeBarcelos, Célia Aparecida Zorzohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721460A8Barioni, Maria Camila Nardinihttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4770458D2Travençolo, Bruno Augusto Nassifhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4734646P3Gama, João Manuel Portela dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8579048P5Silva, Altigran Soares dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4795985E3Paixão, Crícia Zilda Felício2017-05-31T13:24:50Z2017-05-31T13:24:50Z2017-03-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfPAIXÃO, Crícia Zilda Felício. Assessing and improving recommender systems to deal with user cold-start problem. 2017. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2017. http://dx.doi.org/10.14393/ufu.te.2017.66https://repositorio.ufu.br/handle/123456789/18778http://dx.doi.org/10.14393/ufu.te.2017.66enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2019-02-11T16:21:43Zoai:repositorio.ufu.br:123456789/18778Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2019-02-11T16:21:43Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Assessing and improving recommender systems to deal with user cold-start problem
title Assessing and improving recommender systems to deal with user cold-start problem
spellingShingle Assessing and improving recommender systems to deal with user cold-start problem
Paixão, Crícia Zilda Felício
Computação
Percepção visual
Usuários da internet
Sistemas de recomendação social
Sistema de recomendação
Preferências dos usuários
Problema do cold-start do usuário
Multi-armed bandits
Recommender system
User preferences
Cold-start user problem
Social recommender systems
Visual perception
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Assessing and improving recommender systems to deal with user cold-start problem
title_full Assessing and improving recommender systems to deal with user cold-start problem
title_fullStr Assessing and improving recommender systems to deal with user cold-start problem
title_full_unstemmed Assessing and improving recommender systems to deal with user cold-start problem
title_sort Assessing and improving recommender systems to deal with user cold-start problem
author Paixão, Crícia Zilda Felício
author_facet Paixão, Crícia Zilda Felício
author_role author
dc.contributor.none.fl_str_mv Preux, Philippe
Barcelos, Célia Aparecida Zorzo
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721460A8
Barioni, Maria Camila Nardini
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4770458D2
Travençolo, Bruno Augusto Nassif
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4734646P3
Gama, João Manuel Portela da
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8579048P5
Silva, Altigran Soares da
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4795985E3
dc.contributor.author.fl_str_mv Paixão, Crícia Zilda Felício
dc.subject.por.fl_str_mv Computação
Percepção visual
Usuários da internet
Sistemas de recomendação social
Sistema de recomendação
Preferências dos usuários
Problema do cold-start do usuário
Multi-armed bandits
Recommender system
User preferences
Cold-start user problem
Social recommender systems
Visual perception
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Computação
Percepção visual
Usuários da internet
Sistemas de recomendação social
Sistema de recomendação
Preferências dos usuários
Problema do cold-start do usuário
Multi-armed bandits
Recommender system
User preferences
Cold-start user problem
Social recommender systems
Visual perception
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Recommender systems are in our everyday life. The recommendation methods have as main purpose to predict preferences for new items based on userŠs past preferences. The research related to this topic seeks among other things to discuss user cold-start problem, which is the challenge of recommending to users with few or no preferences records. One way to address cold-start issues is to infer the missing data relying on side information. Side information of different types has been explored in researches. Some studies use social information combined with usersŠ preferences, others user click behavior, location-based information, userŠs visual perception, contextual information, etc. The typical approach is to use side information to build one prediction model for each cold user. Due to the inherent complexity of this prediction process, for full cold-start user in particular, the performance of most recommender systems falls a great deal. We, rather, propose that cold users are best served by models already built in system. In this thesis we propose 4 approaches to deal with user cold-start problem using existing models available for analysis in the recommender systems. We cover the follow aspects: o Embedding social information into traditional recommender systems: We investigate the role of several social metrics on pairwise preference recommendations and provide the Ąrst steps towards a general framework to incorporate social information in traditional approaches. o Improving recommendation with visual perception similarities: We extract networks connecting users with similar visual perception and use them to come up with prediction models that maximize the information gained from cold users. o Analyzing the beneĄts of general framework to incorporate networked information into recommender systems: Representing different types of side information as a user network, we investigated how to incorporate networked information into recommender systems to understand the beneĄts of it in the context of cold user recommendation. o Analyzing the impact of prediction model selection for cold users: The last proposal consider that without side information the system will recommend to cold users based on the switch of models already built in system. We evaluated the proposed approaches in terms of prediction quality and ranking quality in real-world datasets under different recommendation domains. The experiments showed that our approaches achieve better results than the comparison methods.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-31T13:24:50Z
2017-05-31T13:24:50Z
2017-03-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PAIXÃO, Crícia Zilda Felício. Assessing and improving recommender systems to deal with user cold-start problem. 2017. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2017. http://dx.doi.org/10.14393/ufu.te.2017.66
https://repositorio.ufu.br/handle/123456789/18778
http://dx.doi.org/10.14393/ufu.te.2017.66
identifier_str_mv PAIXÃO, Crícia Zilda Felício. Assessing and improving recommender systems to deal with user cold-start problem. 2017. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2017. http://dx.doi.org/10.14393/ufu.te.2017.66
url https://repositorio.ufu.br/handle/123456789/18778
http://dx.doi.org/10.14393/ufu.te.2017.66
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711306652385280