A machine learning approach for indirect human presence detection using IoT devices

Detalhes bibliográficos
Autor(a) principal: Madeira, Rui Nuno Neves
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/13012
Resumo: The recent increased democratization of technology led to the appearance of new devices dedicated to the improvement of our daily living and working spaces, capable of being remotely controlled through the internet and interoperability with other systems. In this context, human presence detection is fundamental for several purposes, such has: further automization, usage pattern learning, problem detection (illness, or intruder), etc. Current intrusion detection devices usually have flaws depending on type and many times are not coordinated for better performance. Coordinating the devices for higher level operation however requires a device, or software, that is able communicate and control them. Muzzley is a company that tries to solve this issue by creating a mobile application where the user can register all its devices and control them from there. In this dissertation we propose an approach to human presence detection using metrics based on messages between devices and the Muzzley platform. The idea is that the detection does not rely on information from specific presence detectors, but that it is able to achieve its purpose by analyzing the patterns of interactions with the devices. For this, anonimyzed datasets created by the Muzzley platform are submitted to an extensive processing in order to create meaningful features that will then be used with a machine learning algorithm for training and testing. The main contributions of this study is the processing done to create meaningful information for the task, the demonstration of the capabilities of the interactions between these devices and platforms for human presence detection, and the methods used to improve the performance of the approach.
id RCAP_64ca6bd23352b2a381ef1006b3cb1a91
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/13012
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A machine learning approach for indirect human presence detection using IoT devicesHuman presence detectionAmbient intelligenceInternet of thingsEngenharia da programaçãoMachine learningInteligência artificialProcessamento de imagensVigilância electrónicaDispositivo de controloSensorNatureza humanaInternetThe recent increased democratization of technology led to the appearance of new devices dedicated to the improvement of our daily living and working spaces, capable of being remotely controlled through the internet and interoperability with other systems. In this context, human presence detection is fundamental for several purposes, such has: further automization, usage pattern learning, problem detection (illness, or intruder), etc. Current intrusion detection devices usually have flaws depending on type and many times are not coordinated for better performance. Coordinating the devices for higher level operation however requires a device, or software, that is able communicate and control them. Muzzley is a company that tries to solve this issue by creating a mobile application where the user can register all its devices and control them from there. In this dissertation we propose an approach to human presence detection using metrics based on messages between devices and the Muzzley platform. The idea is that the detection does not rely on information from specific presence detectors, but that it is able to achieve its purpose by analyzing the patterns of interactions with the devices. For this, anonimyzed datasets created by the Muzzley platform are submitted to an extensive processing in order to create meaningful features that will then be used with a machine learning algorithm for training and testing. The main contributions of this study is the processing done to create meaningful information for the task, the demonstration of the capabilities of the interactions between these devices and platforms for human presence detection, and the methods used to improve the performance of the approach.A recente maior democratização da tecnologia contribuiu para o aumento da disponibilidade de dispositivos dedicados à melhoria dos nossos espaços de vivência e trabalho, capazes de controlo remoto pela internet e de interoperabilidade com outros. É neste contexto que a detecção de presença humana é fundamental pois: permite a automatização de acções, a aprendizagem de padrões de uso, a detecção de problemas de doença ou intrusão, etc. Dispositivos específicos de detecção de presença normalmente tem falhas dependendo da sua natureza, e não costumam estar coordenados de forma a melhorar a performance. Coordenar os aparelhos de forma a obter um nível mais inteligente de uso requer um outro dispositivo ou software capaz de comunicar e controlar os outros. A Muzzley é uma empresa que criou uma aplicação móvel onde os utilizadores podem registar todos os seus dispositivos e depois controla-los a partir do programa. Esta dissertação propõe uma abordagem para a detecção de presença baseada na utilização de métricas extraídas das mensagens entre os dispositivos e a plataforma da Muzzley. A ideia é que a detecção não será feita por informação de sensores específicos mas sim pela analise de padrões de interacções com os dispositivos. Conjuntos de dados anónimos criados na plataforma serão submetidos a uma fase extensa de processamento de forma a criar atributos interessantes para o treino e teste de algoritmos de aprendizagem automática. As contribuições principais deste estudo são os algoritmos de processamento construídos para a criação da informação relevante para a tarefa, a demonstração da capacidade do uso destas interações para a detecção de presença, e os métodos usados de forma a melhorar a performance da abordagem.2017-04-18T17:26:49Z2016-12-16T00:00:00Z2016-12-162016-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/13012TID:201542390engMadeira, Rui Nuno Nevesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:53:17Zoai:repositorio.iscte-iul.pt:10071/13012Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:26:42.378480Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A machine learning approach for indirect human presence detection using IoT devices
title A machine learning approach for indirect human presence detection using IoT devices
spellingShingle A machine learning approach for indirect human presence detection using IoT devices
Madeira, Rui Nuno Neves
Human presence detection
Ambient intelligence
Internet of things
Engenharia da programação
Machine learning
Inteligência artificial
Processamento de imagens
Vigilância electrónica
Dispositivo de controlo
Sensor
Natureza humana
Internet
title_short A machine learning approach for indirect human presence detection using IoT devices
title_full A machine learning approach for indirect human presence detection using IoT devices
title_fullStr A machine learning approach for indirect human presence detection using IoT devices
title_full_unstemmed A machine learning approach for indirect human presence detection using IoT devices
title_sort A machine learning approach for indirect human presence detection using IoT devices
author Madeira, Rui Nuno Neves
author_facet Madeira, Rui Nuno Neves
author_role author
dc.contributor.author.fl_str_mv Madeira, Rui Nuno Neves
dc.subject.por.fl_str_mv Human presence detection
Ambient intelligence
Internet of things
Engenharia da programação
Machine learning
Inteligência artificial
Processamento de imagens
Vigilância electrónica
Dispositivo de controlo
Sensor
Natureza humana
Internet
topic Human presence detection
Ambient intelligence
Internet of things
Engenharia da programação
Machine learning
Inteligência artificial
Processamento de imagens
Vigilância electrónica
Dispositivo de controlo
Sensor
Natureza humana
Internet
description The recent increased democratization of technology led to the appearance of new devices dedicated to the improvement of our daily living and working spaces, capable of being remotely controlled through the internet and interoperability with other systems. In this context, human presence detection is fundamental for several purposes, such has: further automization, usage pattern learning, problem detection (illness, or intruder), etc. Current intrusion detection devices usually have flaws depending on type and many times are not coordinated for better performance. Coordinating the devices for higher level operation however requires a device, or software, that is able communicate and control them. Muzzley is a company that tries to solve this issue by creating a mobile application where the user can register all its devices and control them from there. In this dissertation we propose an approach to human presence detection using metrics based on messages between devices and the Muzzley platform. The idea is that the detection does not rely on information from specific presence detectors, but that it is able to achieve its purpose by analyzing the patterns of interactions with the devices. For this, anonimyzed datasets created by the Muzzley platform are submitted to an extensive processing in order to create meaningful features that will then be used with a machine learning algorithm for training and testing. The main contributions of this study is the processing done to create meaningful information for the task, the demonstration of the capabilities of the interactions between these devices and platforms for human presence detection, and the methods used to improve the performance of the approach.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-16T00:00:00Z
2016-12-16
2016-09
2017-04-18T17:26:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/13012
TID:201542390
url http://hdl.handle.net/10071/13012
identifier_str_mv TID:201542390
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134830342963200