Models for limited-dependent variables
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/37350 |
Resumo: | The problem of estimating censored linear regression models with autocorrelated errors arises in many environmental and social studies. Moreover, often, real life problems require modelling several response variables together. The present work proposes methods to estimate censored regression models in the context of time series and multivariate data. The methods are based on creating complete–data by filling in the censored observations, which is the most widely used strategy when the data are missing or censored. In the context of univariate time series data, we used a Bayesian approach to estimate censored regression models with AR(p) errors. The approach considers the Gibbs sampler with data augmentation (GDA), in which, at each iteration, both the model parameters and the latent variables are sampled. Then, a suitable variable transformation allows the full likelihood to be obtained. A simulation study indicates that the proposed approach produces estimates with a high accuracy even in scenarios where the proportion of censored observations is large. Additionally model checking and model selection procedures for censored time series data are proposed and illustrated in a real data of cloud ceiling. In the context of multivariate data, we propose three data augmentation based methods, mainly, the Expectation Maximization (EM), the classical Data Augmentation and the GDA algorithms. Through a simulation study, the asymptotic properties of the estimates were studied, where it was concluded that the estimates produced by DA and GDA are consistent for low and moderate correlation. In addition, a procedure for partial differences of multivariate data was developed, which allowed the computation of the likelihood function and a posteriori distribution for the multivariate regression model with autocorrelated data. |
id |
RCAP_655e29768416fb7f2a0dbb734568de5c |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/37350 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Models for limited-dependent variablesCensored dataLinear regressionAutocorrelationBayesian analysisGibbs samplerData augmentationMultivariate dataThe problem of estimating censored linear regression models with autocorrelated errors arises in many environmental and social studies. Moreover, often, real life problems require modelling several response variables together. The present work proposes methods to estimate censored regression models in the context of time series and multivariate data. The methods are based on creating complete–data by filling in the censored observations, which is the most widely used strategy when the data are missing or censored. In the context of univariate time series data, we used a Bayesian approach to estimate censored regression models with AR(p) errors. The approach considers the Gibbs sampler with data augmentation (GDA), in which, at each iteration, both the model parameters and the latent variables are sampled. Then, a suitable variable transformation allows the full likelihood to be obtained. A simulation study indicates that the proposed approach produces estimates with a high accuracy even in scenarios where the proportion of censored observations is large. Additionally model checking and model selection procedures for censored time series data are proposed and illustrated in a real data of cloud ceiling. In the context of multivariate data, we propose three data augmentation based methods, mainly, the Expectation Maximization (EM), the classical Data Augmentation and the GDA algorithms. Through a simulation study, the asymptotic properties of the estimates were studied, where it was concluded that the estimates produced by DA and GDA are consistent for low and moderate correlation. In addition, a procedure for partial differences of multivariate data was developed, which allowed the computation of the likelihood function and a posteriori distribution for the multivariate regression model with autocorrelated data.O problema de estimar modelos de regressão linear (RL) para dados censurados com erros autocorrelacionados surge em muitos estudos ambientais e sociais. Além disso, frequentemente, os problemas da vida real requerem a modelação de várias variáveis de resposta em simultâneo. O presente trabalho propõe métodos para estimar modelos de regressão linear para dados censurados no contexto de séries temporais e dados multivariados. Os métodos baseiam-se na criação de conjunto de dados completos através da imputação das observações censuradas, que é a estratégia mais amplamente utilizada quando estamos perante dados omissos ou censurados. No contexto de dados de séries temporais univariadas, utilizou-se uma abordagem bayesiana para estimar modelos de regressão censurados com erros autoregressivos AR(p). Esta abordagem considera o amostrador Gibbs com ampliação de dados (GDA), na qual, em cada iteração, são simulados tanto os parâmetros do modelo como as variáveis latentes. Para o cálculo da distribuição a posteriori, aplicou-se uma transformação adequada da variável latente, o que permitiu a obtenção da função de verosimilhança completa para o modelo. O estudo de simulação realizado mostra que a abordagem proposta produz estimativas com uma elevada precisão mesmo em cenários em que a proporção de observações censuradas é grande. Métodos de diagnóstico e seleção de modelos para dados censurados e autocorrelacionados são propostos e ilustrados num conjunto dados reais. No contexto de dados multivariados, propuseram-se três métodos de estimação baseados na ampliação de dados, nomeadamente, o algoritmo EM (Expectation Maximization), o algoritimo de ampliação de dados usando a abordagem clássica (DA) e o algoritmo GDA. Por meio de estudo de simulação, estudaram-se as propriedades assintóticas das estimativas, concluindo-se que as estimativas produzidas por DA e GDA são consistentes para correlação baixa e moderada. Além disso, desenvolveu-se um procedimento para calcular diferenças parciais de dados multivariados, o que permitiu deduzir a função de verosimilhança e distribuição a posteriori para o modelo de regressão multivariada com dados autocorrelacionados.2023-04-26T13:49:11Z2023-01-18T00:00:00Z2023-01-18doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/37350engSousa, Rodney Carvalho Afonso deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:44:45Zoai:ria.ua.pt:10773/37350Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:44:45Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Models for limited-dependent variables |
title |
Models for limited-dependent variables |
spellingShingle |
Models for limited-dependent variables Sousa, Rodney Carvalho Afonso de Censored data Linear regression Autocorrelation Bayesian analysis Gibbs sampler Data augmentation Multivariate data |
title_short |
Models for limited-dependent variables |
title_full |
Models for limited-dependent variables |
title_fullStr |
Models for limited-dependent variables |
title_full_unstemmed |
Models for limited-dependent variables |
title_sort |
Models for limited-dependent variables |
author |
Sousa, Rodney Carvalho Afonso de |
author_facet |
Sousa, Rodney Carvalho Afonso de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sousa, Rodney Carvalho Afonso de |
dc.subject.por.fl_str_mv |
Censored data Linear regression Autocorrelation Bayesian analysis Gibbs sampler Data augmentation Multivariate data |
topic |
Censored data Linear regression Autocorrelation Bayesian analysis Gibbs sampler Data augmentation Multivariate data |
description |
The problem of estimating censored linear regression models with autocorrelated errors arises in many environmental and social studies. Moreover, often, real life problems require modelling several response variables together. The present work proposes methods to estimate censored regression models in the context of time series and multivariate data. The methods are based on creating complete–data by filling in the censored observations, which is the most widely used strategy when the data are missing or censored. In the context of univariate time series data, we used a Bayesian approach to estimate censored regression models with AR(p) errors. The approach considers the Gibbs sampler with data augmentation (GDA), in which, at each iteration, both the model parameters and the latent variables are sampled. Then, a suitable variable transformation allows the full likelihood to be obtained. A simulation study indicates that the proposed approach produces estimates with a high accuracy even in scenarios where the proportion of censored observations is large. Additionally model checking and model selection procedures for censored time series data are proposed and illustrated in a real data of cloud ceiling. In the context of multivariate data, we propose three data augmentation based methods, mainly, the Expectation Maximization (EM), the classical Data Augmentation and the GDA algorithms. Through a simulation study, the asymptotic properties of the estimates were studied, where it was concluded that the estimates produced by DA and GDA are consistent for low and moderate correlation. In addition, a procedure for partial differences of multivariate data was developed, which allowed the computation of the likelihood function and a posteriori distribution for the multivariate regression model with autocorrelated data. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-26T13:49:11Z 2023-01-18T00:00:00Z 2023-01-18 |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/37350 |
url |
http://hdl.handle.net/10773/37350 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543850478010368 |