Regression models for grouped survival data: Estimation and sensitivity analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | http://www.repositorio.ufba.br/ri/handle/ri/5518 |
Resumo: | texto completo: acesso restrito. p. 993–1007 |
id |
UFBA-2_2725d5dc370e5e9c38742fb37dd14333 |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/5518 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
Hashimoto, Elizabeth M.Ortega, Edwin M.M.Paula, Gilberto A.Barreto, Mauricio LimaHashimoto, Elizabeth M.Ortega, Edwin M.M.Paula, Gilberto A.Barreto, Mauricio Lima2012-03-06T20:19:55Z20110167-9473)http://www.repositorio.ufba.br/ri/handle/ri/5518v. 55.texto completo: acesso restrito. p. 993–1007In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models.Submitted by Ana Valéria de Jesus Moura (anavaleria_131@hotmail.com) on 2012-03-06T20:19:55Z No. of bitstreams: 1 Regression models for grouped survival data_ Estimation and sensitivity analysis.pdf: 954201 bytes, checksum: a9cd7951adcd732c06eef0caf9c6693d (MD5)Made available in DSpace on 2012-03-06T20:19:55Z (GMT). No. of bitstreams: 1 Regression models for grouped survival data_ Estimation and sensitivity analysis.pdf: 954201 bytes, checksum: a9cd7951adcd732c06eef0caf9c6693d (MD5) Previous issue date: 2011doi:10.1016/j.csda.2010.08.004reponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBACensored dataGrouped survival dataLink functionRegression modelSensitivity analysisRegression models for grouped survival data: Estimation and sensitivity analysisComputational Statistics and Data Analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10000-01-01enginfo:eu-repo/semantics/openAccessORIGINALRegression models for grouped survival data_ Estimation and sensitivity analysis.pdfRegression models for grouped survival data_ Estimation and sensitivity analysis.pdfapplication/pdf954201https://repositorio.ufba.br/bitstream/ri/5518/1/Regression%20models%20for%20grouped%20survival%20data_%20Estimation%20and%20sensitivity%20analysis.pdfa9cd7951adcd732c06eef0caf9c6693dMD51LICENSElicense.txtlicense.txttext/plain1762https://repositorio.ufba.br/bitstream/ri/5518/2/license.txt1b89a9a0548218172d7c829f87a0eab9MD52TEXTRegression models for grouped survival data_ Estimation and sensitivity analysis.pdf.txtRegression models for grouped survival data_ Estimation and sensitivity analysis.pdf.txtExtracted texttext/plain52618https://repositorio.ufba.br/bitstream/ri/5518/3/Regression%20models%20for%20grouped%20survival%20data_%20Estimation%20and%20sensitivity%20analysis.pdf.txt6e539f4de4b19e07ce21a838033ef14bMD53ri/55182022-07-05 14:03:21.063oai:repositorio.ufba.br:ri/5518VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIHJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBCgogICAgUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNz77+9byBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldQpyZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBjb25jZWRlIGFvClJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkYSBCYWhpYSBvIGRpcmVpdG8KZGUgbWFudGVyIHVtYSBj77+9cGlhIGVtIHNldSByZXBvc2l077+9cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCAKZGUgcHJlc2VydmHvv73vv71vLiBFc3NlcyB0ZXJtb3MsIG7vv71vIGV4Y2x1c2l2b3MsIG1hbnTvv71tIG9zIGRpcmVpdG9zIGRlIAphdXRvci9jb3B5cmlnaHQsIG1hcyBlbnRlbmRlIG8gZG9jdW1lbnRvIGNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsIGRlc3NhIFVuaXZlcnNpZGFkZS4gCgogICAgUGFyYSBvcyBkb2N1bWVudG9zIHB1YmxpY2Fkb3MgY29tIHJlcGFzc2UgZGUgZGlyZWl0b3MgZGUgZGlzdHJpYnVp77+977+9bywgZXNzZSB0ZXJtbyBkZSBsaWNlbu+/vWEgZW50ZW5kZSBxdWU6IAoKICAgIE1hbnRlbmRvIG9zICBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyAKZGUgcHVibGljYe+/ve+/vWVzLCBvIHJlcG9zaXTvv71yaW8gcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIAppbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1h77+977+9ZXMgc29icmUgbyBkb2N1bWVudG8gKE1ldGFkYWRvcyBkZXNjcml0aXZvcykuCgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXvv73vv71vIGNpZW5077+9ZmljYSBjb20gYXMgcmVzdHJp77+977+9ZXMgaW1wb3N0YXMgcGVsb3MgCmVkaXRvcmVzIGRlIHBlcmnvv71kaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNh77+977+9ZXMgZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbO+/vXRpY2EgZGUgCkFjZXNzbyBBYmVydG8sIG9zIGRlcO+/vXNpdG9zIGNvbXB1bHPvv71yaW9zIG5lc3NlIHJlcG9zaXTvv71yaW8gbWFudO+/vW0gCm9zIGRpcmVpdG9zIGF1dG9yYWlzLCBtYXMgbWFudO+/vW0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0Ye+/ve+/vW8gZGVzc2UgdGVybW8gbu+/vW8gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBwb2RlIHNlciBhY2VpdG8gcGVsbyAKYXV0b3IsIGRldGVudG9yZXMgZGUgZGlyZWl0b3MgZS9vdSB0ZXJjZWlyb3MgYW1wYXJhZG9zIHBlbGEgCnVuaXZlcnNpZGFkZS4gRGV2aWRvIGFvcyBkaWZlcmVudGVzIHByb2Nlc3NvcyBwZWxvIHF1YWwgYSBzdWJtaXNz77+9byAKcG9kZSBvY29ycmVyLCBvIHJlcG9zaXTvv71yaW8gcGVybWl0ZSBhIGFjZWl0Ye+/ve+/vW8gZGEgbGljZW7vv71hIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnvv73vv71vLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:03:21Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
Regression models for grouped survival data: Estimation and sensitivity analysis |
dc.title.alternative.pt_BR.fl_str_mv |
Computational Statistics and Data Analysis |
title |
Regression models for grouped survival data: Estimation and sensitivity analysis |
spellingShingle |
Regression models for grouped survival data: Estimation and sensitivity analysis Hashimoto, Elizabeth M. Censored data Grouped survival data Link function Regression model Sensitivity analysis |
title_short |
Regression models for grouped survival data: Estimation and sensitivity analysis |
title_full |
Regression models for grouped survival data: Estimation and sensitivity analysis |
title_fullStr |
Regression models for grouped survival data: Estimation and sensitivity analysis |
title_full_unstemmed |
Regression models for grouped survival data: Estimation and sensitivity analysis |
title_sort |
Regression models for grouped survival data: Estimation and sensitivity analysis |
author |
Hashimoto, Elizabeth M. |
author_facet |
Hashimoto, Elizabeth M. Ortega, Edwin M.M. Paula, Gilberto A. Barreto, Mauricio Lima |
author_role |
author |
author2 |
Ortega, Edwin M.M. Paula, Gilberto A. Barreto, Mauricio Lima |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Hashimoto, Elizabeth M. Ortega, Edwin M.M. Paula, Gilberto A. Barreto, Mauricio Lima Hashimoto, Elizabeth M. Ortega, Edwin M.M. Paula, Gilberto A. Barreto, Mauricio Lima |
dc.subject.por.fl_str_mv |
Censored data Grouped survival data Link function Regression model Sensitivity analysis |
topic |
Censored data Grouped survival data Link function Regression model Sensitivity analysis |
description |
texto completo: acesso restrito. p. 993–1007 |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011 |
dc.date.accessioned.fl_str_mv |
2012-03-06T20:19:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufba.br/ri/handle/ri/5518 |
dc.identifier.issn.none.fl_str_mv |
0167-9473) |
dc.identifier.number.pt_BR.fl_str_mv |
v. 55. |
identifier_str_mv |
0167-9473) v. 55. |
url |
http://www.repositorio.ufba.br/ri/handle/ri/5518 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.pt_BR.fl_str_mv |
doi:10.1016/j.csda.2010.08.004 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/5518/1/Regression%20models%20for%20grouped%20survival%20data_%20Estimation%20and%20sensitivity%20analysis.pdf https://repositorio.ufba.br/bitstream/ri/5518/2/license.txt https://repositorio.ufba.br/bitstream/ri/5518/3/Regression%20models%20for%20grouped%20survival%20data_%20Estimation%20and%20sensitivity%20analysis.pdf.txt |
bitstream.checksum.fl_str_mv |
a9cd7951adcd732c06eef0caf9c6693d 1b89a9a0548218172d7c829f87a0eab9 6e539f4de4b19e07ce21a838033ef14b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459396050583552 |