Maximum principles for some quasilinear elliptic systems

Detalhes bibliográficos
Autor(a) principal: Leonardi, Salvatore
Data de Publicação: 2020
Outros Autores: Leonetti, Francesco, Pignotti, Cristina, Rocha, Eugénio, Staicu, Vasile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25838
Resumo: We give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β plane
id RCAP_6594c6b64d76a9531b408b2b5aa9e1af
oai_identifier_str oai:ria.ua.pt:10773/25838
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Maximum principles for some quasilinear elliptic systemsElliptic systemMaximum principler-staircase supportWe give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β planeElsevier2020-12-01T00:00:00Z2020-05-01T00:00:00Z2020-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25838eng0362-546X10.1016/j.na.2018.11.004Leonardi, SalvatoreLeonetti, FrancescoPignotti, CristinaRocha, EugénioStaicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:03Zoai:ria.ua.pt:10773/25838Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:59.224153Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Maximum principles for some quasilinear elliptic systems
title Maximum principles for some quasilinear elliptic systems
spellingShingle Maximum principles for some quasilinear elliptic systems
Leonardi, Salvatore
Elliptic system
Maximum principle
r-staircase support
title_short Maximum principles for some quasilinear elliptic systems
title_full Maximum principles for some quasilinear elliptic systems
title_fullStr Maximum principles for some quasilinear elliptic systems
title_full_unstemmed Maximum principles for some quasilinear elliptic systems
title_sort Maximum principles for some quasilinear elliptic systems
author Leonardi, Salvatore
author_facet Leonardi, Salvatore
Leonetti, Francesco
Pignotti, Cristina
Rocha, Eugénio
Staicu, Vasile
author_role author
author2 Leonetti, Francesco
Pignotti, Cristina
Rocha, Eugénio
Staicu, Vasile
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Leonardi, Salvatore
Leonetti, Francesco
Pignotti, Cristina
Rocha, Eugénio
Staicu, Vasile
dc.subject.por.fl_str_mv Elliptic system
Maximum principle
r-staircase support
topic Elliptic system
Maximum principle
r-staircase support
description We give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β plane
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01T00:00:00Z
2020-05-01T00:00:00Z
2020-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25838
url http://hdl.handle.net/10773/25838
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0362-546X
10.1016/j.na.2018.11.004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137643992186880