Maximum principles for some quasilinear elliptic systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/25838 |
Resumo: | We give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β plane |
id |
RCAP_6594c6b64d76a9531b408b2b5aa9e1af |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/25838 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Maximum principles for some quasilinear elliptic systemsElliptic systemMaximum principler-staircase supportWe give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β planeElsevier2020-12-01T00:00:00Z2020-05-01T00:00:00Z2020-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25838eng0362-546X10.1016/j.na.2018.11.004Leonardi, SalvatoreLeonetti, FrancescoPignotti, CristinaRocha, EugénioStaicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:03Zoai:ria.ua.pt:10773/25838Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:59.224153Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Maximum principles for some quasilinear elliptic systems |
title |
Maximum principles for some quasilinear elliptic systems |
spellingShingle |
Maximum principles for some quasilinear elliptic systems Leonardi, Salvatore Elliptic system Maximum principle r-staircase support |
title_short |
Maximum principles for some quasilinear elliptic systems |
title_full |
Maximum principles for some quasilinear elliptic systems |
title_fullStr |
Maximum principles for some quasilinear elliptic systems |
title_full_unstemmed |
Maximum principles for some quasilinear elliptic systems |
title_sort |
Maximum principles for some quasilinear elliptic systems |
author |
Leonardi, Salvatore |
author_facet |
Leonardi, Salvatore Leonetti, Francesco Pignotti, Cristina Rocha, Eugénio Staicu, Vasile |
author_role |
author |
author2 |
Leonetti, Francesco Pignotti, Cristina Rocha, Eugénio Staicu, Vasile |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Leonardi, Salvatore Leonetti, Francesco Pignotti, Cristina Rocha, Eugénio Staicu, Vasile |
dc.subject.por.fl_str_mv |
Elliptic system Maximum principle r-staircase support |
topic |
Elliptic system Maximum principle r-staircase support |
description |
We give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β plane |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-01T00:00:00Z 2020-05-01T00:00:00Z 2020-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/25838 |
url |
http://hdl.handle.net/10773/25838 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0362-546X 10.1016/j.na.2018.11.004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137643992186880 |