Smallness and cancellation in some elliptic systems with measure data

Detalhes bibliográficos
Autor(a) principal: Leonetti, Francesco
Data de Publicação: 2018
Outros Autores: Rocha, Eugenio, Staicu, Vasile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/23634
Resumo: In a bounded open subset Ω ⊂ Rn, we study Dirichlet problems with elliptic systems, involving a finite Radon measure μ on Rn with values into RN , defined by { −div A(x, u(x), Du(x)) = μ in Ω, u = 0 on ∂Ω, where Aα i (x, y, ξ) = N∑ β=1 n∑ j=1 aα,β i,j (x, y) ξβ j with α ∈ {1, . . . , N } the equation index. We prove the existence of a (distributional) solution u : Ω → RN , obtained as the limit of approximations, by assuming: (i) that coefficients aα,β i,j are bounded Carathéodory functions; (ii) ellipticity of the diagonal coefficients aα,α i,j ; and (iii) smallness of the quadratic form associated to the off-diagonal coefficients aα,β i,j (i.e. α = β) verifying a r-staircase support condition with r > 0. Such a smallness condition is satisfied, for instance, in each one of these cases: (a) aα,β i,j = −aβ,α j,i (skew-symmetry); (b) |aα,β i,j | is small; (c) aα,β i,j may be decomposed into two parts, the first enjoying skew-symmetry and the second being small in absolute value. We give an example that satisfies our hypotheses but does not satisfy assumptions introduced in previous works. A Brezis’s type nonexistence result is also given for general (smooth) elliptic-hyperbolic systems.
id RCAP_90ed9c42f84ba85ff31a332a7c32de4e
oai_identifier_str oai:ria.ua.pt:10773/23634
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Smallness and cancellation in some elliptic systems with measure dataEllipticSystemExistenceMeasureSolutionIn a bounded open subset Ω ⊂ Rn, we study Dirichlet problems with elliptic systems, involving a finite Radon measure μ on Rn with values into RN , defined by { −div A(x, u(x), Du(x)) = μ in Ω, u = 0 on ∂Ω, where Aα i (x, y, ξ) = N∑ β=1 n∑ j=1 aα,β i,j (x, y) ξβ j with α ∈ {1, . . . , N } the equation index. We prove the existence of a (distributional) solution u : Ω → RN , obtained as the limit of approximations, by assuming: (i) that coefficients aα,β i,j are bounded Carathéodory functions; (ii) ellipticity of the diagonal coefficients aα,α i,j ; and (iii) smallness of the quadratic form associated to the off-diagonal coefficients aα,β i,j (i.e. α = β) verifying a r-staircase support condition with r > 0. Such a smallness condition is satisfied, for instance, in each one of these cases: (a) aα,β i,j = −aβ,α j,i (skew-symmetry); (b) |aα,β i,j | is small; (c) aα,β i,j may be decomposed into two parts, the first enjoying skew-symmetry and the second being small in absolute value. We give an example that satisfies our hypotheses but does not satisfy assumptions introduced in previous works. A Brezis’s type nonexistence result is also given for general (smooth) elliptic-hyperbolic systems.Elsevier10000-01-01T00:00:00Z2018-09-15T00:00:00Z2018-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/23634eng0022-247X10.1016/j.jmaa.2018.05.047Leonetti, FrancescoRocha, EugenioStaicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:46:33Zoai:ria.ua.pt:10773/23634Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:57:35.194175Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Smallness and cancellation in some elliptic systems with measure data
title Smallness and cancellation in some elliptic systems with measure data
spellingShingle Smallness and cancellation in some elliptic systems with measure data
Leonetti, Francesco
Elliptic
System
Existence
Measure
Solution
title_short Smallness and cancellation in some elliptic systems with measure data
title_full Smallness and cancellation in some elliptic systems with measure data
title_fullStr Smallness and cancellation in some elliptic systems with measure data
title_full_unstemmed Smallness and cancellation in some elliptic systems with measure data
title_sort Smallness and cancellation in some elliptic systems with measure data
author Leonetti, Francesco
author_facet Leonetti, Francesco
Rocha, Eugenio
Staicu, Vasile
author_role author
author2 Rocha, Eugenio
Staicu, Vasile
author2_role author
author
dc.contributor.author.fl_str_mv Leonetti, Francesco
Rocha, Eugenio
Staicu, Vasile
dc.subject.por.fl_str_mv Elliptic
System
Existence
Measure
Solution
topic Elliptic
System
Existence
Measure
Solution
description In a bounded open subset Ω ⊂ Rn, we study Dirichlet problems with elliptic systems, involving a finite Radon measure μ on Rn with values into RN , defined by { −div A(x, u(x), Du(x)) = μ in Ω, u = 0 on ∂Ω, where Aα i (x, y, ξ) = N∑ β=1 n∑ j=1 aα,β i,j (x, y) ξβ j with α ∈ {1, . . . , N } the equation index. We prove the existence of a (distributional) solution u : Ω → RN , obtained as the limit of approximations, by assuming: (i) that coefficients aα,β i,j are bounded Carathéodory functions; (ii) ellipticity of the diagonal coefficients aα,α i,j ; and (iii) smallness of the quadratic form associated to the off-diagonal coefficients aα,β i,j (i.e. α = β) verifying a r-staircase support condition with r > 0. Such a smallness condition is satisfied, for instance, in each one of these cases: (a) aα,β i,j = −aβ,α j,i (skew-symmetry); (b) |aα,β i,j | is small; (c) aα,β i,j may be decomposed into two parts, the first enjoying skew-symmetry and the second being small in absolute value. We give an example that satisfies our hypotheses but does not satisfy assumptions introduced in previous works. A Brezis’s type nonexistence result is also given for general (smooth) elliptic-hyperbolic systems.
publishDate 2018
dc.date.none.fl_str_mv 10000-01-01T00:00:00Z
2018-09-15T00:00:00Z
2018-09-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/23634
url http://hdl.handle.net/10773/23634
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-247X
10.1016/j.jmaa.2018.05.047
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137630106943488