Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/11522 |
Resumo: | The rapid development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers for improving customer experience. Nevertheless, this trend poses a problem, considering information is widely scattered, making almost impossible to extract from it useful knowledge. In this study, with the aim of facilitating this process, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. Two dictionaries are compiled for building the lexicon used to parse the 401 reviews collected from a Portuguese eco-hotel between January and August of 2015. Then, the latent Dirichlet allocation (LDA) modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Findings of this study state that accuracy is influenced by interaction between LDA generated topic models and the correct construction of both dictionaries. These results also reveal that text mining can generate new insights into variables that have been extensively studied in hospitality industry, including that hotel food generates ordinary positive sentiments for the case studied, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the approach proposed. |
id |
RCAP_65a9fb0801e66de0cba52d76cdc6b606 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/11522 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotelHospitality managementSentiment classificationText miningCustomer reviewsGestão hoteleiraClassificação de sentimentosOpiniões de clientesThe rapid development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers for improving customer experience. Nevertheless, this trend poses a problem, considering information is widely scattered, making almost impossible to extract from it useful knowledge. In this study, with the aim of facilitating this process, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. Two dictionaries are compiled for building the lexicon used to parse the 401 reviews collected from a Portuguese eco-hotel between January and August of 2015. Then, the latent Dirichlet allocation (LDA) modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Findings of this study state that accuracy is influenced by interaction between LDA generated topic models and the correct construction of both dictionaries. These results also reveal that text mining can generate new insights into variables that have been extensively studied in hospitality industry, including that hotel food generates ordinary positive sentiments for the case studied, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the approach proposed.O rápido desenvolvimento da Internet e dos dispositivos móveis possibilitou o aparecimento de sites de viagens e sites de opinião na indústria hoteleira, levando a um grande número opiniões publicadas por parte do cliente. Embora, esses comentários possam influenciar a procura futura de certos hotéis, estes também podem ser usados pelos gestores dos hotéis para melhorar a experiência do cliente. No entanto, esta tendência representa um problema, uma vez que hoje em dia a informação se apresenta bastante ampla e dispersa, tornando quase impossível analisar todas as opiniões de clientes. Neste estudo, com o objetivo de facilitar este processo, a classificação de sentimentos de um hotel ecológico é avaliada através de uma abordagem de “text mining” usando diversas fontes de comentários de clientes. Dois dicionários foram compilados para a construção do léxico usado para analisar os 401 comentários recolhidos a partir de um Eco hotel português entre janeiro e agosto de 2015. Em seguida, o algoritmo de modelação “latent Dirichlet allocation” (LDA) é aplicado para reunir tópicos relevantes que caracterizam uma determinada questão de hospitalidade por um sentimento. Os resultados apurados neste estudo focam essencialmente que a precisão do mesmo é influenciada pela interação entre o modelo LDA, neste caso entre os tópicos por ele gerados e a correta construção de ambos os dicionários. Estes resultados revelam também que o “text mining” pode gerar novas perspetivas acerca de variáveis que têm sido extensivamente estudadas na indústria hoteleira, incluindo, no caso estudado, que a comida do hotel gera sentimentos positivos comuns, enquanto a hospitalidade gera ambos os sentimentos: positivos comuns e positivos fortes. Tais resultados são valiosos para a gestão hoteleira validando a abordagem proposta.2016-06-20T17:17:28Z2015-01-01T00:00:00Z20152015-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/11522TID:201193167engCalheiros, Ana Catarina dos Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:52:37Zoai:repositorio.iscte-iul.pt:10071/11522Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:26:14.900383Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel |
title |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel |
spellingShingle |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel Calheiros, Ana Catarina dos Santos Hospitality management Sentiment classification Text mining Customer reviews Gestão hoteleira Classificação de sentimentos Opiniões de clientes |
title_short |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel |
title_full |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel |
title_fullStr |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel |
title_full_unstemmed |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel |
title_sort |
Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel |
author |
Calheiros, Ana Catarina dos Santos |
author_facet |
Calheiros, Ana Catarina dos Santos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Calheiros, Ana Catarina dos Santos |
dc.subject.por.fl_str_mv |
Hospitality management Sentiment classification Text mining Customer reviews Gestão hoteleira Classificação de sentimentos Opiniões de clientes |
topic |
Hospitality management Sentiment classification Text mining Customer reviews Gestão hoteleira Classificação de sentimentos Opiniões de clientes |
description |
The rapid development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers for improving customer experience. Nevertheless, this trend poses a problem, considering information is widely scattered, making almost impossible to extract from it useful knowledge. In this study, with the aim of facilitating this process, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. Two dictionaries are compiled for building the lexicon used to parse the 401 reviews collected from a Portuguese eco-hotel between January and August of 2015. Then, the latent Dirichlet allocation (LDA) modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Findings of this study state that accuracy is influenced by interaction between LDA generated topic models and the correct construction of both dictionaries. These results also reveal that text mining can generate new insights into variables that have been extensively studied in hospitality industry, including that hotel food generates ordinary positive sentiments for the case studied, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the approach proposed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01T00:00:00Z 2015 2015-12 2016-06-20T17:17:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/11522 TID:201193167 |
url |
http://hdl.handle.net/10071/11522 |
identifier_str_mv |
TID:201193167 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134825338109952 |