Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel

Detalhes bibliográficos
Autor(a) principal: Calheiros, Ana Catarina dos Santos
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/11522
Resumo: The rapid development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers for improving customer experience. Nevertheless, this trend poses a problem, considering information is widely scattered, making almost impossible to extract from it useful knowledge. In this study, with the aim of facilitating this process, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. Two dictionaries are compiled for building the lexicon used to parse the 401 reviews collected from a Portuguese eco-hotel between January and August of 2015. Then, the latent Dirichlet allocation (LDA) modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Findings of this study state that accuracy is influenced by interaction between LDA generated topic models and the correct construction of both dictionaries. These results also reveal that text mining can generate new insights into variables that have been extensively studied in hospitality industry, including that hotel food generates ordinary positive sentiments for the case studied, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the approach proposed.
id RCAP_65a9fb0801e66de0cba52d76cdc6b606
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/11522
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotelHospitality managementSentiment classificationText miningCustomer reviewsGestão hoteleiraClassificação de sentimentosOpiniões de clientesThe rapid development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers for improving customer experience. Nevertheless, this trend poses a problem, considering information is widely scattered, making almost impossible to extract from it useful knowledge. In this study, with the aim of facilitating this process, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. Two dictionaries are compiled for building the lexicon used to parse the 401 reviews collected from a Portuguese eco-hotel between January and August of 2015. Then, the latent Dirichlet allocation (LDA) modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Findings of this study state that accuracy is influenced by interaction between LDA generated topic models and the correct construction of both dictionaries. These results also reveal that text mining can generate new insights into variables that have been extensively studied in hospitality industry, including that hotel food generates ordinary positive sentiments for the case studied, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the approach proposed.O rápido desenvolvimento da Internet e dos dispositivos móveis possibilitou o aparecimento de sites de viagens e sites de opinião na indústria hoteleira, levando a um grande número opiniões publicadas por parte do cliente. Embora, esses comentários possam influenciar a procura futura de certos hotéis, estes também podem ser usados pelos gestores dos hotéis para melhorar a experiência do cliente. No entanto, esta tendência representa um problema, uma vez que hoje em dia a informação se apresenta bastante ampla e dispersa, tornando quase impossível analisar todas as opiniões de clientes. Neste estudo, com o objetivo de facilitar este processo, a classificação de sentimentos de um hotel ecológico é avaliada através de uma abordagem de “text mining” usando diversas fontes de comentários de clientes. Dois dicionários foram compilados para a construção do léxico usado para analisar os 401 comentários recolhidos a partir de um Eco hotel português entre janeiro e agosto de 2015. Em seguida, o algoritmo de modelação “latent Dirichlet allocation” (LDA) é aplicado para reunir tópicos relevantes que caracterizam uma determinada questão de hospitalidade por um sentimento. Os resultados apurados neste estudo focam essencialmente que a precisão do mesmo é influenciada pela interação entre o modelo LDA, neste caso entre os tópicos por ele gerados e a correta construção de ambos os dicionários. Estes resultados revelam também que o “text mining” pode gerar novas perspetivas acerca de variáveis que têm sido extensivamente estudadas na indústria hoteleira, incluindo, no caso estudado, que a comida do hotel gera sentimentos positivos comuns, enquanto a hospitalidade gera ambos os sentimentos: positivos comuns e positivos fortes. Tais resultados são valiosos para a gestão hoteleira validando a abordagem proposta.2016-06-20T17:17:28Z2015-01-01T00:00:00Z20152015-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/11522TID:201193167engCalheiros, Ana Catarina dos Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:52:37Zoai:repositorio.iscte-iul.pt:10071/11522Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:26:14.900383Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
title Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
spellingShingle Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
Calheiros, Ana Catarina dos Santos
Hospitality management
Sentiment classification
Text mining
Customer reviews
Gestão hoteleira
Classificação de sentimentos
Opiniões de clientes
title_short Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
title_full Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
title_fullStr Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
title_full_unstemmed Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
title_sort Sentiment analysis in hospitality using text mining: The case of a Portuguese eco-hotel
author Calheiros, Ana Catarina dos Santos
author_facet Calheiros, Ana Catarina dos Santos
author_role author
dc.contributor.author.fl_str_mv Calheiros, Ana Catarina dos Santos
dc.subject.por.fl_str_mv Hospitality management
Sentiment classification
Text mining
Customer reviews
Gestão hoteleira
Classificação de sentimentos
Opiniões de clientes
topic Hospitality management
Sentiment classification
Text mining
Customer reviews
Gestão hoteleira
Classificação de sentimentos
Opiniões de clientes
description The rapid development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers for improving customer experience. Nevertheless, this trend poses a problem, considering information is widely scattered, making almost impossible to extract from it useful knowledge. In this study, with the aim of facilitating this process, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. Two dictionaries are compiled for building the lexicon used to parse the 401 reviews collected from a Portuguese eco-hotel between January and August of 2015. Then, the latent Dirichlet allocation (LDA) modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Findings of this study state that accuracy is influenced by interaction between LDA generated topic models and the correct construction of both dictionaries. These results also reveal that text mining can generate new insights into variables that have been extensively studied in hospitality industry, including that hotel food generates ordinary positive sentiments for the case studied, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the approach proposed.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01T00:00:00Z
2015
2015-12
2016-06-20T17:17:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/11522
TID:201193167
url http://hdl.handle.net/10071/11522
identifier_str_mv TID:201193167
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134825338109952