Sentiment classification of consumer generated online reviews using topic modeling

Detalhes bibliográficos
Autor(a) principal: Calheiros, A. C.
Data de Publicação: 2017
Outros Autores: Moro, S., Rita, P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/14506
Resumo: The development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers to improve customer experience. In this article, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. The latent Dirichlet allocation modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Several findings were unveiled including that hotel food generates ordinary positive sentiments, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the proposed approach.
id RCAP_99135783eab77309346d4e1ff6c25a61
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/14506
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sentiment classification of consumer generated online reviews using topic modelingCustomer reviewsHospitalityText miningTopic modelingSentiment classificationThe development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers to improve customer experience. In this article, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. The latent Dirichlet allocation modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Several findings were unveiled including that hotel food generates ordinary positive sentiments, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the proposed approach.Taylor and Francis2017-10-04T14:22:52Z2019-04-04T00:00:00Z2017-01-01T00:00:00Z20172019-04-02T14:38:23Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/14506eng1936-862310.1080/19368623.2017.1310075Calheiros, A. C.Moro, S.Rita, P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:28:55Zoai:repositorio.iscte-iul.pt:10071/14506Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:12:57.402929Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sentiment classification of consumer generated online reviews using topic modeling
title Sentiment classification of consumer generated online reviews using topic modeling
spellingShingle Sentiment classification of consumer generated online reviews using topic modeling
Calheiros, A. C.
Customer reviews
Hospitality
Text mining
Topic modeling
Sentiment classification
title_short Sentiment classification of consumer generated online reviews using topic modeling
title_full Sentiment classification of consumer generated online reviews using topic modeling
title_fullStr Sentiment classification of consumer generated online reviews using topic modeling
title_full_unstemmed Sentiment classification of consumer generated online reviews using topic modeling
title_sort Sentiment classification of consumer generated online reviews using topic modeling
author Calheiros, A. C.
author_facet Calheiros, A. C.
Moro, S.
Rita, P.
author_role author
author2 Moro, S.
Rita, P.
author2_role author
author
dc.contributor.author.fl_str_mv Calheiros, A. C.
Moro, S.
Rita, P.
dc.subject.por.fl_str_mv Customer reviews
Hospitality
Text mining
Topic modeling
Sentiment classification
topic Customer reviews
Hospitality
Text mining
Topic modeling
Sentiment classification
description The development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers to improve customer experience. In this article, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. The latent Dirichlet allocation modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Several findings were unveiled including that hotel food generates ordinary positive sentiments, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the proposed approach.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-04T14:22:52Z
2017-01-01T00:00:00Z
2017
2019-04-04T00:00:00Z
2019-04-02T14:38:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/14506
url http://hdl.handle.net/10071/14506
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1936-8623
10.1080/19368623.2017.1310075
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor and Francis
publisher.none.fl_str_mv Taylor and Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134685216899072