Sentiment classification of consumer generated online reviews using topic modeling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/14506 |
Resumo: | The development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers to improve customer experience. In this article, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. The latent Dirichlet allocation modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Several findings were unveiled including that hotel food generates ordinary positive sentiments, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the proposed approach. |
id |
RCAP_99135783eab77309346d4e1ff6c25a61 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/14506 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sentiment classification of consumer generated online reviews using topic modelingCustomer reviewsHospitalityText miningTopic modelingSentiment classificationThe development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers to improve customer experience. In this article, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. The latent Dirichlet allocation modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Several findings were unveiled including that hotel food generates ordinary positive sentiments, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the proposed approach.Taylor and Francis2017-10-04T14:22:52Z2019-04-04T00:00:00Z2017-01-01T00:00:00Z20172019-04-02T14:38:23Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/14506eng1936-862310.1080/19368623.2017.1310075Calheiros, A. C.Moro, S.Rita, P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:28:55Zoai:repositorio.iscte-iul.pt:10071/14506Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:12:57.402929Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sentiment classification of consumer generated online reviews using topic modeling |
title |
Sentiment classification of consumer generated online reviews using topic modeling |
spellingShingle |
Sentiment classification of consumer generated online reviews using topic modeling Calheiros, A. C. Customer reviews Hospitality Text mining Topic modeling Sentiment classification |
title_short |
Sentiment classification of consumer generated online reviews using topic modeling |
title_full |
Sentiment classification of consumer generated online reviews using topic modeling |
title_fullStr |
Sentiment classification of consumer generated online reviews using topic modeling |
title_full_unstemmed |
Sentiment classification of consumer generated online reviews using topic modeling |
title_sort |
Sentiment classification of consumer generated online reviews using topic modeling |
author |
Calheiros, A. C. |
author_facet |
Calheiros, A. C. Moro, S. Rita, P. |
author_role |
author |
author2 |
Moro, S. Rita, P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Calheiros, A. C. Moro, S. Rita, P. |
dc.subject.por.fl_str_mv |
Customer reviews Hospitality Text mining Topic modeling Sentiment classification |
topic |
Customer reviews Hospitality Text mining Topic modeling Sentiment classification |
description |
The development of the Internet and mobile devices enabled the emergence of travel and hospitality review sites, leading to a large number of customer opinion posts. While such comments may influence future demand of the targeted hotels, they can also be used by hotel managers to improve customer experience. In this article, sentiment classification of an eco-hotel is assessed through a text mining approach using several different sources of customer reviews. The latent Dirichlet allocation modeling algorithm is applied to gather relevant topics that characterize a given hospitality issue by a sentiment. Several findings were unveiled including that hotel food generates ordinary positive sentiments, while hospitality generates both ordinary and strong positive feelings. Such results are valuable for hospitality management, validating the proposed approach. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-04T14:22:52Z 2017-01-01T00:00:00Z 2017 2019-04-04T00:00:00Z 2019-04-02T14:38:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/14506 |
url |
http://hdl.handle.net/10071/14506 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1936-8623 10.1080/19368623.2017.1310075 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis |
publisher.none.fl_str_mv |
Taylor and Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134685216899072 |