Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation

Detalhes bibliográficos
Autor(a) principal: Ferreira, M.
Data de Publicação: 2021
Outros Autores: Rodrigues, M. M., Vieira, N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31472
Resumo: In this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented.
id RCAP_65f945f249f529668b66dd87dcefc2f9
oai_identifier_str oai:ria.ua.pt:10773/31472
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equationCaputo fractional derivativesRiemann-Liouville fractional derivativesFractional Sturm-Liouville operatorTime-space-fractional telegraph equationMittag-Leffler functionsWright functionsIn this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented.Springer2021-072021-07-01T00:00:00Z2022-06-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31472eng1661-825410.1007/s11785-021-01125-3Ferreira, M.Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:45Zoai:ria.ua.pt:10773/31472Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:20.646860Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
title Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
spellingShingle Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
Ferreira, M.
Caputo fractional derivatives
Riemann-Liouville fractional derivatives
Fractional Sturm-Liouville operator
Time-space-fractional telegraph equation
Mittag-Leffler functions
Wright functions
title_short Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
title_full Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
title_fullStr Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
title_full_unstemmed Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
title_sort Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
author Ferreira, M.
author_facet Ferreira, M.
Rodrigues, M. M.
Vieira, N.
author_role author
author2 Rodrigues, M. M.
Vieira, N.
author2_role author
author
dc.contributor.author.fl_str_mv Ferreira, M.
Rodrigues, M. M.
Vieira, N.
dc.subject.por.fl_str_mv Caputo fractional derivatives
Riemann-Liouville fractional derivatives
Fractional Sturm-Liouville operator
Time-space-fractional telegraph equation
Mittag-Leffler functions
Wright functions
topic Caputo fractional derivatives
Riemann-Liouville fractional derivatives
Fractional Sturm-Liouville operator
Time-space-fractional telegraph equation
Mittag-Leffler functions
Wright functions
description In this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
2021-07-01T00:00:00Z
2022-06-10T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31472
url http://hdl.handle.net/10773/31472
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1661-8254
10.1007/s11785-021-01125-3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137688549326848