Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31472 |
Resumo: | In this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented. |
id |
RCAP_65f945f249f529668b66dd87dcefc2f9 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31472 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equationCaputo fractional derivativesRiemann-Liouville fractional derivativesFractional Sturm-Liouville operatorTime-space-fractional telegraph equationMittag-Leffler functionsWright functionsIn this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented.Springer2021-072021-07-01T00:00:00Z2022-06-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31472eng1661-825410.1007/s11785-021-01125-3Ferreira, M.Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:45Zoai:ria.ua.pt:10773/31472Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:20.646860Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
title |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
spellingShingle |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation Ferreira, M. Caputo fractional derivatives Riemann-Liouville fractional derivatives Fractional Sturm-Liouville operator Time-space-fractional telegraph equation Mittag-Leffler functions Wright functions |
title_short |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
title_full |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
title_fullStr |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
title_full_unstemmed |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
title_sort |
Application of the fractional Sturm–Liouville theory to a fractional Sturm–Liouville telegraph equation |
author |
Ferreira, M. |
author_facet |
Ferreira, M. Rodrigues, M. M. Vieira, N. |
author_role |
author |
author2 |
Rodrigues, M. M. Vieira, N. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreira, M. Rodrigues, M. M. Vieira, N. |
dc.subject.por.fl_str_mv |
Caputo fractional derivatives Riemann-Liouville fractional derivatives Fractional Sturm-Liouville operator Time-space-fractional telegraph equation Mittag-Leffler functions Wright functions |
topic |
Caputo fractional derivatives Riemann-Liouville fractional derivatives Fractional Sturm-Liouville operator Time-space-fractional telegraph equation Mittag-Leffler functions Wright functions |
description |
In this paper, we consider a non-homogeneous time-space-fractional telegraph equation in $n$-dimensions, which is obtained from the standard telegraph equation by replacing the first- and second-order time derivatives by Caputo fractional derivatives of corresponding fractional orders, and the Laplacian operator by a fractional Sturm-Liouville operator defined in terms of right and left fractional Riemann-Liouville derivatives. Using the method of separation of variables, we derive series representations of the solution in terms of Wright functions, for the homogeneous and non-homogeneous cases. The convergence of the series solutions is studied by using well known properties of the Wright function. We show also that our series can be written using the bivariate Mittag-Leffler function. In the end of the paper some illustrative examples are presented. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07 2021-07-01T00:00:00Z 2022-06-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31472 |
url |
http://hdl.handle.net/10773/31472 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1661-8254 10.1007/s11785-021-01125-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137688549326848 |