What best predicts realized and implied volatility: GARCH, GJR or FCGARCH?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/4070 |
Resumo: | This thesis focuses on forecasting realized volatility (RV) and implied volatility (IV) on equity markets, a subject of major importance for volatility traders. The accuracy of IV and GARCH-type models to predict RV has been researched extensively. However, little work has been done to model IV. We test the accuracy of GARCH-type models (GARCH, GJR and FCGARCH) to forecast, one-day ahead, the VIX index (the chosen IV measure) and the S&P500 index's daily realized volatility. While futures on equity's IV are widely available, futures on RV appeared recently on foreign exchange markets. Yet, expansion to equity markets is expectable. Thus, this study is a rst step on developing a RV and IV futures trading strategy. From 2001 to 2010 the models were estimated based on daily data. Forecasts evaluation is based on the mean absolute error criteria and Diebold-Mariano test. We found the GJR/FCGARCH models to have the best performance on both RV and IV. From the results, one can also infer that GARCH-type models are more suitable to foresee IV than RV. A plausible deduction is that past returns and past variance have a higher impact on IV. |
id |
RCAP_67d3606ed00f283144c16e6e795b1248 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/4070 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH?ForecastingRealized volatilityImplied volatilityGARCH modelsMultiple regimesPrevisãoVolatilidade realizadaVolatilidade implícitaModelos GARCHMúltiplos regimesThis thesis focuses on forecasting realized volatility (RV) and implied volatility (IV) on equity markets, a subject of major importance for volatility traders. The accuracy of IV and GARCH-type models to predict RV has been researched extensively. However, little work has been done to model IV. We test the accuracy of GARCH-type models (GARCH, GJR and FCGARCH) to forecast, one-day ahead, the VIX index (the chosen IV measure) and the S&P500 index's daily realized volatility. While futures on equity's IV are widely available, futures on RV appeared recently on foreign exchange markets. Yet, expansion to equity markets is expectable. Thus, this study is a rst step on developing a RV and IV futures trading strategy. From 2001 to 2010 the models were estimated based on daily data. Forecasts evaluation is based on the mean absolute error criteria and Diebold-Mariano test. We found the GJR/FCGARCH models to have the best performance on both RV and IV. From the results, one can also infer that GARCH-type models are more suitable to foresee IV than RV. A plausible deduction is that past returns and past variance have a higher impact on IV.Esta tese centra-se na previsão de volatilidade realizada e volatilidade implícita nos mercados de capitais, um assunto de grande importância para os traders de volatilidade. A precisão de modelos GARCH para prever a volatilidade realizada tem sido estudada extensivamente. No entanto, pouco tem sido feito para modelar volatilidade implícita. Nós testámos a precisão de modelos GARCH (GARCH, GJR e FCGARCH) para prever, com um dia de antecedência, o índice VIX (a medida de volatilidade implícita escolhida) e a volatilidade diária do S&P500. Apesar de futuros sobre volatilidade implícita estarem amplamente disponíveis, os futuros sobre volatilidade realizada só apareceram recentemente nos mercados cambiais. No entanto, a expansão para os mercados de capitais é expectável. Assim, este estudo é um primeiro passo no desenvolvimento de uma estratégia de trading de futuros sobre volatilidade realizada e volatilidade implícita. De 2001 a 2010, os modelos foram estimados com base em dados diários. A avaliação das previsões é baseada no critério do erro médio absoluto e no teste Diebold-Mariano. A conclusão é que os modelos GJR / FCGARCH prevêem melhor quer a volatilidade realizada quer a volatilidade implícita. A partir dos resultados, pode-se, também, inferir que os modelos de tipo GARCH são mais adequados para prever volatilidade implícita do que volatilidade realizada. Uma dedução plausível é que os retornos passados e a variância passada têm um maior impacto sobre volatilidade implícita.2012-11-08T15:33:36Z2011-01-01T00:00:00Z20112011-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/4070engSalgado, Joséinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:23:32Zoai:repositorio.iscte-iul.pt:10071/4070Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:10:46.083785Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? |
title |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? |
spellingShingle |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? Salgado, José Forecasting Realized volatility Implied volatility GARCH models Multiple regimes Previsão Volatilidade realizada Volatilidade implícita Modelos GARCH Múltiplos regimes |
title_short |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? |
title_full |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? |
title_fullStr |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? |
title_full_unstemmed |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? |
title_sort |
What best predicts realized and implied volatility: GARCH, GJR or FCGARCH? |
author |
Salgado, José |
author_facet |
Salgado, José |
author_role |
author |
dc.contributor.author.fl_str_mv |
Salgado, José |
dc.subject.por.fl_str_mv |
Forecasting Realized volatility Implied volatility GARCH models Multiple regimes Previsão Volatilidade realizada Volatilidade implícita Modelos GARCH Múltiplos regimes |
topic |
Forecasting Realized volatility Implied volatility GARCH models Multiple regimes Previsão Volatilidade realizada Volatilidade implícita Modelos GARCH Múltiplos regimes |
description |
This thesis focuses on forecasting realized volatility (RV) and implied volatility (IV) on equity markets, a subject of major importance for volatility traders. The accuracy of IV and GARCH-type models to predict RV has been researched extensively. However, little work has been done to model IV. We test the accuracy of GARCH-type models (GARCH, GJR and FCGARCH) to forecast, one-day ahead, the VIX index (the chosen IV measure) and the S&P500 index's daily realized volatility. While futures on equity's IV are widely available, futures on RV appeared recently on foreign exchange markets. Yet, expansion to equity markets is expectable. Thus, this study is a rst step on developing a RV and IV futures trading strategy. From 2001 to 2010 the models were estimated based on daily data. Forecasts evaluation is based on the mean absolute error criteria and Diebold-Mariano test. We found the GJR/FCGARCH models to have the best performance on both RV and IV. From the results, one can also infer that GARCH-type models are more suitable to foresee IV than RV. A plausible deduction is that past returns and past variance have a higher impact on IV. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01T00:00:00Z 2011 2011-04 2012-11-08T15:33:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/4070 |
url |
http://hdl.handle.net/10071/4070 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134661979406336 |