Procedural modelling techniques to configure driving serious game scenes

Detalhes bibliográficos
Autor(a) principal: Pedro Miguel Cesário Rosa
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://repositorio-aberto.up.pt/handle/10216/83473
Resumo: This dissertation has the objective of tackling the road safety problem in order to further prevent accidents and casualties for both drivers and pedestrians by creating a tool that is capable of loading real world data from user selected locations and render them in 3 dimensional models for further use in serious driving games. These models are then populated with pedestrians that walk around and the ability to drive a vehicle is given to the user. Also the tool should be flexible enough to allow the users to configure the different conditions such as weather, time of day, rendering options, vehicle damage and pedestrian density, in order to conduct studies on different conditions. The project should also be open source, so anyone can edit it and expand it their own way to suit their needs and conduct specific studies. It features Oculus Rift integration, which further extends the possibility of conducting studies to the human driver by giving the possibility to expand this integration to evaluate the driver's behaviours. Another important aspect is the possibility to export the entire procedurally generated scene to a 3D file format that can be edited by an external application.By providing such tool for free, not only marks the beginning of an open source world 3D generator, but also a framework capable of allowing multiple different usages, such as conducting studies, building video game scenarios or be used as a learning tool by a driving school for instance. Hopefully this will increase road safety if used carefully as a serious tool.To do so we'll use the game engine Unity 5 to develop the project, CGIAR-CSI to download elevation data, Google Static Maps for the satellite imagery, OpenStreetMap for the location data and everything else is built inside Unity. Also UnitySlippyMap, which is a world map that works with various tile providers was used and integrated on the context of this project to allow users to select a location inside Unity.Along this document you will find a literature review on the topic, including related work and attempts to do similar projects followed by a comparison between other project and this one. The reader will also find details about development and the system's architecture as well as deep details about implementation. On the end you can find a few screen shots of the results of this project.Key Words: Procedural Modelling, Driving Simulation, World Locations, Serious Games, Road Safety
id RCAP_6a59cc4a70188cef4d6bf951135b0bfc
oai_identifier_str oai:repositorio-aberto.up.pt:10216/83473
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Procedural modelling techniques to configure driving serious game scenesEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringThis dissertation has the objective of tackling the road safety problem in order to further prevent accidents and casualties for both drivers and pedestrians by creating a tool that is capable of loading real world data from user selected locations and render them in 3 dimensional models for further use in serious driving games. These models are then populated with pedestrians that walk around and the ability to drive a vehicle is given to the user. Also the tool should be flexible enough to allow the users to configure the different conditions such as weather, time of day, rendering options, vehicle damage and pedestrian density, in order to conduct studies on different conditions. The project should also be open source, so anyone can edit it and expand it their own way to suit their needs and conduct specific studies. It features Oculus Rift integration, which further extends the possibility of conducting studies to the human driver by giving the possibility to expand this integration to evaluate the driver's behaviours. Another important aspect is the possibility to export the entire procedurally generated scene to a 3D file format that can be edited by an external application.By providing such tool for free, not only marks the beginning of an open source world 3D generator, but also a framework capable of allowing multiple different usages, such as conducting studies, building video game scenarios or be used as a learning tool by a driving school for instance. Hopefully this will increase road safety if used carefully as a serious tool.To do so we'll use the game engine Unity 5 to develop the project, CGIAR-CSI to download elevation data, Google Static Maps for the satellite imagery, OpenStreetMap for the location data and everything else is built inside Unity. Also UnitySlippyMap, which is a world map that works with various tile providers was used and integrated on the context of this project to allow users to select a location inside Unity.Along this document you will find a literature review on the topic, including related work and attempts to do similar projects followed by a comparison between other project and this one. The reader will also find details about development and the system's architecture as well as deep details about implementation. On the end you can find a few screen shots of the results of this project.Key Words: Procedural Modelling, Driving Simulation, World Locations, Serious Games, Road Safety2015-07-142015-07-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/83473TID:201316986engPedro Miguel Cesário Rosainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:09:17Zoai:repositorio-aberto.up.pt:10216/83473Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:16:56.258555Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Procedural modelling techniques to configure driving serious game scenes
title Procedural modelling techniques to configure driving serious game scenes
spellingShingle Procedural modelling techniques to configure driving serious game scenes
Pedro Miguel Cesário Rosa
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short Procedural modelling techniques to configure driving serious game scenes
title_full Procedural modelling techniques to configure driving serious game scenes
title_fullStr Procedural modelling techniques to configure driving serious game scenes
title_full_unstemmed Procedural modelling techniques to configure driving serious game scenes
title_sort Procedural modelling techniques to configure driving serious game scenes
author Pedro Miguel Cesário Rosa
author_facet Pedro Miguel Cesário Rosa
author_role author
dc.contributor.author.fl_str_mv Pedro Miguel Cesário Rosa
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description This dissertation has the objective of tackling the road safety problem in order to further prevent accidents and casualties for both drivers and pedestrians by creating a tool that is capable of loading real world data from user selected locations and render them in 3 dimensional models for further use in serious driving games. These models are then populated with pedestrians that walk around and the ability to drive a vehicle is given to the user. Also the tool should be flexible enough to allow the users to configure the different conditions such as weather, time of day, rendering options, vehicle damage and pedestrian density, in order to conduct studies on different conditions. The project should also be open source, so anyone can edit it and expand it their own way to suit their needs and conduct specific studies. It features Oculus Rift integration, which further extends the possibility of conducting studies to the human driver by giving the possibility to expand this integration to evaluate the driver's behaviours. Another important aspect is the possibility to export the entire procedurally generated scene to a 3D file format that can be edited by an external application.By providing such tool for free, not only marks the beginning of an open source world 3D generator, but also a framework capable of allowing multiple different usages, such as conducting studies, building video game scenarios or be used as a learning tool by a driving school for instance. Hopefully this will increase road safety if used carefully as a serious tool.To do so we'll use the game engine Unity 5 to develop the project, CGIAR-CSI to download elevation data, Google Static Maps for the satellite imagery, OpenStreetMap for the location data and everything else is built inside Unity. Also UnitySlippyMap, which is a world map that works with various tile providers was used and integrated on the context of this project to allow users to select a location inside Unity.Along this document you will find a literature review on the topic, including related work and attempts to do similar projects followed by a comparison between other project and this one. The reader will also find details about development and the system's architecture as well as deep details about implementation. On the end you can find a few screen shots of the results of this project.Key Words: Procedural Modelling, Driving Simulation, World Locations, Serious Games, Road Safety
publishDate 2015
dc.date.none.fl_str_mv 2015-07-14
2015-07-14T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio-aberto.up.pt/handle/10216/83473
TID:201316986
url https://repositorio-aberto.up.pt/handle/10216/83473
identifier_str_mv TID:201316986
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136089041010689