Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/5723 |
Resumo: | A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information Systems |
id |
RCAP_6b08ef0703e3908db867b20f5eba6325 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/5723 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information scienceGeocomputationGeovisualizationNeural NetworksSelf-organizing MapsSpatial ClusteringA thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsThe size and dimensionality of available geospatial repositories increases every day, placing additional pressure on existing analysis tools, as they are expected to extract more knowledge from these databases. Most of these tools were created in a data poor environment and thus rarely address concerns of efficiency, dimensionality and automatic exploration. In addition, traditional statistical techniques present several assumptions that are not realistic in the geospatial data domain. An example of this is the statistical independence between observations required by most classical statistics methods, which conflicts with the well-known spatial dependence that exists in geospatial data. Artificial intelligence and data mining methods constitute an alternative to explore and extract knowledge from geospatial data, which is less assumption dependent. In this thesis, we study the possible adaptation of existing general-purpose data mining tools to geospatial data analysis. The characteristics of geospatial datasets seems to be similar in many ways with other aspatial datasets for which several data mining tools have been used with success in the detection of patterns and relations. It seems, however that GIS-minded analysis and objectives require more than the results provided by these general tools and adaptations to meet the geographical information scientist‟s requirements are needed. Thus, we propose several geospatial applications based on a well-known data mining method, the self-organizing map (SOM), and analyse the adaptations required in each application to fulfil those objectives and needs. Three main fields of GIScience are covered in this thesis: cartographic representation; spatial clustering and knowledge discovery; and location optimization.(...)Bação, Fernando José Ferreira LucasLobo, Victor José de Almeida e SousaRUNHenriques, Roberto André Pereira2011-06-06T13:54:54Z2011-06-062011-06-06T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/5723TID:101208391enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-11T01:37:20Zoai:run.unl.pt:10362/5723Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-11T01:37:20Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science |
title |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science |
spellingShingle |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science Henriques, Roberto André Pereira Geocomputation Geovisualization Neural Networks Self-organizing Maps Spatial Clustering |
title_short |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science |
title_full |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science |
title_fullStr |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science |
title_full_unstemmed |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science |
title_sort |
Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science |
author |
Henriques, Roberto André Pereira |
author_facet |
Henriques, Roberto André Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bação, Fernando José Ferreira Lucas Lobo, Victor José de Almeida e Sousa RUN |
dc.contributor.author.fl_str_mv |
Henriques, Roberto André Pereira |
dc.subject.por.fl_str_mv |
Geocomputation Geovisualization Neural Networks Self-organizing Maps Spatial Clustering |
topic |
Geocomputation Geovisualization Neural Networks Self-organizing Maps Spatial Clustering |
description |
A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information Systems |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06-06T13:54:54Z 2011-06-06 2011-06-06T00:00:00Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/5723 TID:101208391 |
url |
http://hdl.handle.net/10362/5723 |
identifier_str_mv |
TID:101208391 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545460213088256 |