Photonic integrated circuits for passive optical networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/41590 |
Resumo: | The concept of connectivity in the dictionary is defined as the ability of a computer or an information system to connect to other devices. This concept is constantly evolving because the devices that require connectivity are becoming increasingly diverse, and information systems are more complex. This increase in connectivity leads to an increase on the amount of transferred information and, consequently, the need for the evolution of telecommunications infrastructure, particularly those that reach our homes, such as passive optical networks. These networks also have their own evolution plan through the standards defined by standardization bodies which have started in the early 2000s with GPON, implemented worldwide today, bringing downstream speeds of 2.5 Gbps and upstream speeds of 1.25 Gbps. Today, we are witnessing the proliferation of technologies that already support 10 Gbps symmetrically, with the first tests of networks capable of delivering 50 Gbps symmetric speeds underway. The evolution of passive optical networks is only possible with the evolution of the optoelectronic components that implement them, and it is in the physical layer that challenges increase with the increase in bandwidth per device or the need for tuneability, as is the case of NG-PON2 standard. In parallel, with the evolution of passive optical networks in recent years, research and industry surrounding photonic integrated circuits have also made significant strides, allowing many of the devices around us to already have simple photonic integrated circuits. In data centers, where the need for bandwidth is much higher, most transceivers are already based on photonic integrated circuits and they bring all the advantages that integration has brought to the electronics domain, such as scalability at production and technological level, price or power consumption. Hence, the hypothesis arises that photonic integrated circuits can be part of the solution for the physical layer of 10 Gbps and beyond passive optical networks. Starting from this point, this thesis begins by presenting the evolution and hardware requirements of passive optical networks, as well as the evolution of photonic integrated circuits and their maturity for this market. This is followed by a theoretical study of the blocks of a transceiver for passive optical networks based on photonic integrated circuits, moving on to its design and testing, presenting experimental results of transceiver prototypes based on photonic integrated circuits. Finally, a techno-economic study and price sensitivity analysis are presented to ensure the feasibility of the proposed solution, along with a discussion of future market possibilities for integrated optical circuits in passive optical networks. |
id |
RCAP_6c6e4e7f42cef5aacbacd9aee2997823 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41590 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Photonic integrated circuits for passive optical networksPICPONGPONXGS-PONNG-PON2OptoelectronicsIntegrated transmitterIntegrated receiverASICPackagingThe concept of connectivity in the dictionary is defined as the ability of a computer or an information system to connect to other devices. This concept is constantly evolving because the devices that require connectivity are becoming increasingly diverse, and information systems are more complex. This increase in connectivity leads to an increase on the amount of transferred information and, consequently, the need for the evolution of telecommunications infrastructure, particularly those that reach our homes, such as passive optical networks. These networks also have their own evolution plan through the standards defined by standardization bodies which have started in the early 2000s with GPON, implemented worldwide today, bringing downstream speeds of 2.5 Gbps and upstream speeds of 1.25 Gbps. Today, we are witnessing the proliferation of technologies that already support 10 Gbps symmetrically, with the first tests of networks capable of delivering 50 Gbps symmetric speeds underway. The evolution of passive optical networks is only possible with the evolution of the optoelectronic components that implement them, and it is in the physical layer that challenges increase with the increase in bandwidth per device or the need for tuneability, as is the case of NG-PON2 standard. In parallel, with the evolution of passive optical networks in recent years, research and industry surrounding photonic integrated circuits have also made significant strides, allowing many of the devices around us to already have simple photonic integrated circuits. In data centers, where the need for bandwidth is much higher, most transceivers are already based on photonic integrated circuits and they bring all the advantages that integration has brought to the electronics domain, such as scalability at production and technological level, price or power consumption. Hence, the hypothesis arises that photonic integrated circuits can be part of the solution for the physical layer of 10 Gbps and beyond passive optical networks. Starting from this point, this thesis begins by presenting the evolution and hardware requirements of passive optical networks, as well as the evolution of photonic integrated circuits and their maturity for this market. This is followed by a theoretical study of the blocks of a transceiver for passive optical networks based on photonic integrated circuits, moving on to its design and testing, presenting experimental results of transceiver prototypes based on photonic integrated circuits. Finally, a techno-economic study and price sensitivity analysis are presented to ensure the feasibility of the proposed solution, along with a discussion of future market possibilities for integrated optical circuits in passive optical networks.O conceito de conectividade no dicionário vem como a capacidade de computador ou um sistema informático tem de se conectar a outros dispositivos. Este conceito, está em constante evolução porque os dispositivos que exigem conectividade são cada vez mais e mais variados e os sistemas informáticos são mais complexos. Este aumento de conectividade leva a um aumento e transferência de informação sendo subsequente a necessidade de evolução da infraestrutura de telecomunicações em particular as que chegam às nossas casas: as redes óticas passivas. Estas têm também o seu plano de evolução, através dos standards definidos pelos corpos de estandardização, começando no início dos anos 2000 com o GPON que hoje está amplamente implementado pelo mundo, que trouxe velocidades de downstream de 2.5 Gbps e the upstream de 1.25 Gbps. Hoje, assistimos à proliferação das tecnologias que já suportam 10 Gbps simétricos estando já em fase de primeiros testes às redes que irão trazer 50 Gbps simétricos. A evolução das redes óticas passivas, só é possível com a evolução dos componentes optoelectrónicos que as implementam e é aqui, na camada física, que os desafios aumentam com o aumento da largura de banda por dispositivo ou necessidade de sintonização como é no caso do standard NG-PON2. Em paralelo, com a evolução das redes óticas passivas nos últimos anos, a investigação e indústria em torno dos circuitos óticos integrados tem também dado passos significativos. Isto permite que muitos dos dispositivos que nos rodeiem já tenham circuitos óticos integrados simples ou que em datacenters, onde a necessidade de largura de banda é muito superior, a maior parte dos transceivers implementados já sejam baseados em circuitos óticos integrados. Os circuitos óticos integrados, trazem todas as vantagens que a integração trouxe ao domínio da eletrónica como por exemplo escalabilidade de produção e tecnológica, preço ou potência consumida. Surge então a hipótese de que os circuitos óticos integrados possam ser parte da solução para a camada física das redes óticas passivas de 10 Gbps e de próxima geração. Partindo daqui, esta tese começa por apresentar qual a evolução e necessidade de hardware das redes óticas passivas bem como a evolução dos circuitos óticos integrados e a sua maturidade para este mercado. Segue-se então um estudo teórico dos blocos de um transceiver para redes óticas passivas baseado em circuito ótico integrado passando depois à sua concretização de desenho e teste apresentando resultados experimentais de protótipos de transceiver baseado em circuito ótico integrado. Por fim, é apresentado um estudo tecno-económico e de sensibilidade de preço para garantir a viabilidade da solução proposta e discussão de futuras possibilidades de mercado para os circuitos óticos integrados em redes óticas passivas.2025-12-31T00:00:00Z2023-12-20T00:00:00Z2023-12-20doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/41590engRodrigues, Francisco Manuel Ruivoinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:55:58Zoai:ria.ua.pt:10773/41590Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:55:58Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Photonic integrated circuits for passive optical networks |
title |
Photonic integrated circuits for passive optical networks |
spellingShingle |
Photonic integrated circuits for passive optical networks Rodrigues, Francisco Manuel Ruivo PIC PON GPON XGS-PON NG-PON2 Optoelectronics Integrated transmitter Integrated receiver ASIC Packaging |
title_short |
Photonic integrated circuits for passive optical networks |
title_full |
Photonic integrated circuits for passive optical networks |
title_fullStr |
Photonic integrated circuits for passive optical networks |
title_full_unstemmed |
Photonic integrated circuits for passive optical networks |
title_sort |
Photonic integrated circuits for passive optical networks |
author |
Rodrigues, Francisco Manuel Ruivo |
author_facet |
Rodrigues, Francisco Manuel Ruivo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rodrigues, Francisco Manuel Ruivo |
dc.subject.por.fl_str_mv |
PIC PON GPON XGS-PON NG-PON2 Optoelectronics Integrated transmitter Integrated receiver ASIC Packaging |
topic |
PIC PON GPON XGS-PON NG-PON2 Optoelectronics Integrated transmitter Integrated receiver ASIC Packaging |
description |
The concept of connectivity in the dictionary is defined as the ability of a computer or an information system to connect to other devices. This concept is constantly evolving because the devices that require connectivity are becoming increasingly diverse, and information systems are more complex. This increase in connectivity leads to an increase on the amount of transferred information and, consequently, the need for the evolution of telecommunications infrastructure, particularly those that reach our homes, such as passive optical networks. These networks also have their own evolution plan through the standards defined by standardization bodies which have started in the early 2000s with GPON, implemented worldwide today, bringing downstream speeds of 2.5 Gbps and upstream speeds of 1.25 Gbps. Today, we are witnessing the proliferation of technologies that already support 10 Gbps symmetrically, with the first tests of networks capable of delivering 50 Gbps symmetric speeds underway. The evolution of passive optical networks is only possible with the evolution of the optoelectronic components that implement them, and it is in the physical layer that challenges increase with the increase in bandwidth per device or the need for tuneability, as is the case of NG-PON2 standard. In parallel, with the evolution of passive optical networks in recent years, research and industry surrounding photonic integrated circuits have also made significant strides, allowing many of the devices around us to already have simple photonic integrated circuits. In data centers, where the need for bandwidth is much higher, most transceivers are already based on photonic integrated circuits and they bring all the advantages that integration has brought to the electronics domain, such as scalability at production and technological level, price or power consumption. Hence, the hypothesis arises that photonic integrated circuits can be part of the solution for the physical layer of 10 Gbps and beyond passive optical networks. Starting from this point, this thesis begins by presenting the evolution and hardware requirements of passive optical networks, as well as the evolution of photonic integrated circuits and their maturity for this market. This is followed by a theoretical study of the blocks of a transceiver for passive optical networks based on photonic integrated circuits, moving on to its design and testing, presenting experimental results of transceiver prototypes based on photonic integrated circuits. Finally, a techno-economic study and price sensitivity analysis are presented to ensure the feasibility of the proposed solution, along with a discussion of future market possibilities for integrated optical circuits in passive optical networks. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-20T00:00:00Z 2023-12-20 2025-12-31T00:00:00Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41590 |
url |
http://hdl.handle.net/10773/41590 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543904639057920 |