Synchrony and Elementary Operations on Coupled Cell Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/90612 |
Resumo: | Given a finite graph (network), let every node (cell) represent an individual dynamics given by a system of ordinary differential equations, and every arrow (edge) encode the dynamical influence of the tail node on the head node. We have then defined a coupled cell system that is associated with the given network structure. Subspaces that are defined by equalities of cell coordinates and left invariant under every coupled cell system respecting the network structure are called synchrony subspaces. They are completely determined by the network structure and form a complete lattice under set inclusions. We analyze the transition of the lattice of synchrony subspaces of a network that is caused by structural changes in the network topology, such as deletion and addition of cells or edges, and rewirings of edges. We give sufficient, and in some cases both sufficient and necessary, conditions under which lattice elements persist or disappear. |
id |
RCAP_6d65540dbaf4430042f2411212b78931 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/90612 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Synchrony and Elementary Operations on Coupled Cell NetworksGiven a finite graph (network), let every node (cell) represent an individual dynamics given by a system of ordinary differential equations, and every arrow (edge) encode the dynamical influence of the tail node on the head node. We have then defined a coupled cell system that is associated with the given network structure. Subspaces that are defined by equalities of cell coordinates and left invariant under every coupled cell system respecting the network structure are called synchrony subspaces. They are completely determined by the network structure and form a complete lattice under set inclusions. We analyze the transition of the lattice of synchrony subspaces of a network that is caused by structural changes in the network topology, such as deletion and addition of cells or edges, and rewirings of edges. We give sufficient, and in some cases both sufficient and necessary, conditions under which lattice elements persist or disappear.20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/90612eng1536-004010.1137/140980119Manuela AguiarDias, APSRuan, Hinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:33:27Zoai:repositorio-aberto.up.pt:10216/90612Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:26:33.095669Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Synchrony and Elementary Operations on Coupled Cell Networks |
title |
Synchrony and Elementary Operations on Coupled Cell Networks |
spellingShingle |
Synchrony and Elementary Operations on Coupled Cell Networks Manuela Aguiar |
title_short |
Synchrony and Elementary Operations on Coupled Cell Networks |
title_full |
Synchrony and Elementary Operations on Coupled Cell Networks |
title_fullStr |
Synchrony and Elementary Operations on Coupled Cell Networks |
title_full_unstemmed |
Synchrony and Elementary Operations on Coupled Cell Networks |
title_sort |
Synchrony and Elementary Operations on Coupled Cell Networks |
author |
Manuela Aguiar |
author_facet |
Manuela Aguiar Dias, APS Ruan, H |
author_role |
author |
author2 |
Dias, APS Ruan, H |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Manuela Aguiar Dias, APS Ruan, H |
description |
Given a finite graph (network), let every node (cell) represent an individual dynamics given by a system of ordinary differential equations, and every arrow (edge) encode the dynamical influence of the tail node on the head node. We have then defined a coupled cell system that is associated with the given network structure. Subspaces that are defined by equalities of cell coordinates and left invariant under every coupled cell system respecting the network structure are called synchrony subspaces. They are completely determined by the network structure and form a complete lattice under set inclusions. We analyze the transition of the lattice of synchrony subspaces of a network that is caused by structural changes in the network topology, such as deletion and addition of cells or edges, and rewirings of edges. We give sufficient, and in some cases both sufficient and necessary, conditions under which lattice elements persist or disappear. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/90612 |
url |
https://hdl.handle.net/10216/90612 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1536-0040 10.1137/140980119 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136178849447936 |