Selection of variables in Discrete Discriminant Analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://ciencia.iscte-iul.pt/id/ci-pub-15551 http://hdl.handle.net/10071/13940 |
Resumo: | In Discrete Discriminant Analysis one often has to deal with dimensionality problems. In fact, even a moderate number of explanatory variables leads to an enormous number of possible states (outcomes) when compared to the number of objects under study, as occurs particularly in the social sciences, humanities and health-related elds. As a consequence, classi cation or discriminant models may exhibit poor performance due to the large number of parameters to be estimated. In the present paper, we discuss variable selection techniques which aim to address the issue of dimensionality. We speci cally perform classi cation using a combined model approach. In this setting, variable selection is particularly pertinent, enabling the handling of degrees of freedom and reducing computational cost. |
id |
RCAP_6dcf675972bc5fc63aeb8f3920910891 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/13940 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Selection of variables in Discrete Discriminant AnalysisCombining modelsDiscrete Discriminant AnalysisVariable selectionIn Discrete Discriminant Analysis one often has to deal with dimensionality problems. In fact, even a moderate number of explanatory variables leads to an enormous number of possible states (outcomes) when compared to the number of objects under study, as occurs particularly in the social sciences, humanities and health-related elds. As a consequence, classi cation or discriminant models may exhibit poor performance due to the large number of parameters to be estimated. In the present paper, we discuss variable selection techniques which aim to address the issue of dimensionality. We speci cally perform classi cation using a combined model approach. In this setting, variable selection is particularly pertinent, enabling the handling of degrees of freedom and reducing computational cost.Walter de Gruyter GmbH2017-07-11T14:30:08Z2013-01-01T00:00:00Z20132017-07-11T14:28:51Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://ciencia.iscte-iul.pt/id/ci-pub-15551http://hdl.handle.net/10071/13940eng1896-381110.2478/bile-2013-0013Marques, A.Ferreira, A. S.Cardoso, M. G. M. S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:59:40Zoai:repositorio.iscte-iul.pt:10071/13940Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:31:21.833151Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Selection of variables in Discrete Discriminant Analysis |
title |
Selection of variables in Discrete Discriminant Analysis |
spellingShingle |
Selection of variables in Discrete Discriminant Analysis Marques, A. Combining models Discrete Discriminant Analysis Variable selection |
title_short |
Selection of variables in Discrete Discriminant Analysis |
title_full |
Selection of variables in Discrete Discriminant Analysis |
title_fullStr |
Selection of variables in Discrete Discriminant Analysis |
title_full_unstemmed |
Selection of variables in Discrete Discriminant Analysis |
title_sort |
Selection of variables in Discrete Discriminant Analysis |
author |
Marques, A. |
author_facet |
Marques, A. Ferreira, A. S. Cardoso, M. G. M. S. |
author_role |
author |
author2 |
Ferreira, A. S. Cardoso, M. G. M. S. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Marques, A. Ferreira, A. S. Cardoso, M. G. M. S. |
dc.subject.por.fl_str_mv |
Combining models Discrete Discriminant Analysis Variable selection |
topic |
Combining models Discrete Discriminant Analysis Variable selection |
description |
In Discrete Discriminant Analysis one often has to deal with dimensionality problems. In fact, even a moderate number of explanatory variables leads to an enormous number of possible states (outcomes) when compared to the number of objects under study, as occurs particularly in the social sciences, humanities and health-related elds. As a consequence, classi cation or discriminant models may exhibit poor performance due to the large number of parameters to be estimated. In the present paper, we discuss variable selection techniques which aim to address the issue of dimensionality. We speci cally perform classi cation using a combined model approach. In this setting, variable selection is particularly pertinent, enabling the handling of degrees of freedom and reducing computational cost. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2017-07-11T14:30:08Z 2017-07-11T14:28:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ciencia.iscte-iul.pt/id/ci-pub-15551 http://hdl.handle.net/10071/13940 |
url |
https://ciencia.iscte-iul.pt/id/ci-pub-15551 http://hdl.handle.net/10071/13940 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1896-3811 10.2478/bile-2013-0013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Walter de Gruyter GmbH |
publisher.none.fl_str_mv |
Walter de Gruyter GmbH |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134875479965696 |