Selection of variables in Discrete Discriminant Analysis

Detalhes bibliográficos
Autor(a) principal: Marques, A.
Data de Publicação: 2013
Outros Autores: Ferreira, A. S., Cardoso, M. G. M. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://ciencia.iscte-iul.pt/id/ci-pub-15551
http://hdl.handle.net/10071/13940
Resumo: In Discrete Discriminant Analysis one often has to deal with dimensionality problems. In fact, even a moderate number of explanatory variables leads to an enormous number of possible states (outcomes) when compared to the number of objects under study, as occurs particularly in the social sciences, humanities and health-related elds. As a consequence, classi cation or discriminant models may exhibit poor performance due to the large number of parameters to be estimated. In the present paper, we discuss variable selection techniques which aim to address the issue of dimensionality. We speci cally perform classi cation using a combined model approach. In this setting, variable selection is particularly pertinent, enabling the handling of degrees of freedom and reducing computational cost.
id RCAP_6dcf675972bc5fc63aeb8f3920910891
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/13940
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Selection of variables in Discrete Discriminant AnalysisCombining modelsDiscrete Discriminant AnalysisVariable selectionIn Discrete Discriminant Analysis one often has to deal with dimensionality problems. In fact, even a moderate number of explanatory variables leads to an enormous number of possible states (outcomes) when compared to the number of objects under study, as occurs particularly in the social sciences, humanities and health-related elds. As a consequence, classi cation or discriminant models may exhibit poor performance due to the large number of parameters to be estimated. In the present paper, we discuss variable selection techniques which aim to address the issue of dimensionality. We speci cally perform classi cation using a combined model approach. In this setting, variable selection is particularly pertinent, enabling the handling of degrees of freedom and reducing computational cost.Walter de Gruyter GmbH2017-07-11T14:30:08Z2013-01-01T00:00:00Z20132017-07-11T14:28:51Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://ciencia.iscte-iul.pt/id/ci-pub-15551http://hdl.handle.net/10071/13940eng1896-381110.2478/bile-2013-0013Marques, A.Ferreira, A. S.Cardoso, M. G. M. S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:59:40Zoai:repositorio.iscte-iul.pt:10071/13940Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:31:21.833151Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Selection of variables in Discrete Discriminant Analysis
title Selection of variables in Discrete Discriminant Analysis
spellingShingle Selection of variables in Discrete Discriminant Analysis
Marques, A.
Combining models
Discrete Discriminant Analysis
Variable selection
title_short Selection of variables in Discrete Discriminant Analysis
title_full Selection of variables in Discrete Discriminant Analysis
title_fullStr Selection of variables in Discrete Discriminant Analysis
title_full_unstemmed Selection of variables in Discrete Discriminant Analysis
title_sort Selection of variables in Discrete Discriminant Analysis
author Marques, A.
author_facet Marques, A.
Ferreira, A. S.
Cardoso, M. G. M. S.
author_role author
author2 Ferreira, A. S.
Cardoso, M. G. M. S.
author2_role author
author
dc.contributor.author.fl_str_mv Marques, A.
Ferreira, A. S.
Cardoso, M. G. M. S.
dc.subject.por.fl_str_mv Combining models
Discrete Discriminant Analysis
Variable selection
topic Combining models
Discrete Discriminant Analysis
Variable selection
description In Discrete Discriminant Analysis one often has to deal with dimensionality problems. In fact, even a moderate number of explanatory variables leads to an enormous number of possible states (outcomes) when compared to the number of objects under study, as occurs particularly in the social sciences, humanities and health-related elds. As a consequence, classi cation or discriminant models may exhibit poor performance due to the large number of parameters to be estimated. In the present paper, we discuss variable selection techniques which aim to address the issue of dimensionality. We speci cally perform classi cation using a combined model approach. In this setting, variable selection is particularly pertinent, enabling the handling of degrees of freedom and reducing computational cost.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2017-07-11T14:30:08Z
2017-07-11T14:28:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ciencia.iscte-iul.pt/id/ci-pub-15551
http://hdl.handle.net/10071/13940
url https://ciencia.iscte-iul.pt/id/ci-pub-15551
http://hdl.handle.net/10071/13940
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1896-3811
10.2478/bile-2013-0013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Walter de Gruyter GmbH
publisher.none.fl_str_mv Walter de Gruyter GmbH
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134875479965696