Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication

Detalhes bibliográficos
Autor(a) principal: Roque, Francisco José Dias
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/92286
Resumo: Dissertação de Mestrado Integrado em Engenharia Electrotécnica e de Computadores apresentada à Faculdade de Ciências e Tecnologia
id RCAP_6de2549186b73b07da149c589332ad47
oai_identifier_str oai:estudogeral.uc.pt:10316/92286
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Code-Modulated Visual Evoked Potentials for BCI and Biometric AuthenticationCode-Modulated Visual Evoked Potentials for BCI and Biometric AuthenticationInterface Cérebro-Computador (ICC)Eletroencefalografia (EEG)Código modulado por Potenciais Visuais Evocados (C-VEP)Identificação BiométricaAnálise da ComplexidadeBrain-Computer Interface (BCI)Electroencephalography (EEG)Code-modulated Visual Evoked Potentials (C-VEP)Biometric IdentificationComplexity AnalysisDissertação de Mestrado Integrado em Engenharia Electrotécnica e de Computadores apresentada à Faculdade de Ciências e TecnologiaUma interface cérebro-computador (ICC) permite a comunicação entre os utilizadores e um computador ou outros dispositivos, traduzindo em tempo real os sinais neurofisiológicos emitidos pelo cérebro em comandos. Os sistemas ICC têm vindo a evoluir para que possam ser utilizados no quotidiano, mas ainda não se adequam a muitas aplicações e não se encontram preparados para serem aplicados a situações fora do laboratório. A atividade cerebral pode representar uma boa alternativa para os sistemas de identificação/autenticação, em que um sistema de reconhecimento de padrões faz a identificação do indivíduo pela determinação da autenticidade de características fisiológicas da pessoa.O objetivo desta dissertação foi desenvolver um sistema baseado em Código modulado por Potenciais Visuais Evocados (C-VEP) utilizando duas abordagens distintas (ICC e identificação). O C-VEP é um mecanismo neuronal onde o estímulo externo é uma luz codificada por uma sequência binária pseudoaleatorizada. Apesar de vários sistemas de autenticação que utilizam eletroencefalografia (EEG) como modo de implementação, ainda são escassas as aplicações para os autenticadores C-VEP. Vários métodos de processamento do sinal e duas formas de normalização dos dados foram implementados e comparados com as características C-VEP recolhidas.Para além destes métodos, a diferenciação de dados de EEG foi também implementada, o que permitiu melhorar significativamente os resultados. Inicialmente, os métodos que foram aplicados e testados com bases de dados e posteriormente aplicados ao sistema experimental. De forma a avaliar a eficiência das sequências binárias (que codificam estímulos visuais) relativamente aos resultados obtidos, foram implementados diferentes métodos de análise de complexidade de forma a identificar a sequência mais eficiente. O método Análise de Componentes Relacionados com Tarefas (TRCA) foi o método que obteve os melhores resultados comparativamente com os outros métodos implementados, obtendo valores de exatidão de 96\% para a sequência proposta. A utilização da forma derivativa dos dados de EEG mostrou que a dinâmica dos sinais de C-VEP adquiridos melhora a performance da identificação de utilizadores. Com este trabalho, abriu-se um novo caminho na área de investigação dos sistemas de identificação e autenticação baseados em C-VEP, o que pode permitir desenvolver sistemas mais seguros e fiáveis para a validação da admissão de alto nível de segurança.A Brain-Computer Interface (BCI) allows to provide a direct communication pathway between the brain and an external device. BCI systems have improved significantly in recent years, but are still unsuitable for many applications and not prepared for contexts out of lab. BCI has been researched primarily as a communication device for people with severe motor disabilities, but a wide range of new areas of application is emerging. One of these areas is personal identification/recognition in security systems. The goal of this dissertation was to explore the use of Code-modulated Visual Evoked Potentials (C-VEP) in two different contexts: as a BCI system for interaction and as user identifier. The C-VEP is a neural mechanism that results from a visual stimulus modulated by a given bit pattern called pseudorandom binary sequence (PRBS). The use of EEG and in particular C-VEP has been relatively unexplored in the context of user identification. To evaluate the feasibility of these approaches, we tested an extensive set of feature extraction methods, combined with different normalization methods.In addition to these methods, the derivative of the EEG data was also implemented, which allowed to significantly improve the results. Initially, the methods were applied and tested with public benchmark datasets and after that applied to data gathered with our framework and acquisition setup. To evaluate the efficiency of binary sequences, different methods of complexity analysis were implemented. As feature extraction method, Task-Related Component Analysis (TRCA) was the method that attaining an accuracy of of 96\% with our proposed sequence. The use of EEG data derivative form showed that the dynamics of the acquired C-VEP signals improves user identification performance.The results were promising, showing the possibility of using C-VEP for identification and authentication systems, which might allow to develop more secure and reliable systems for high-level security admittance validation.2020-11-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/10316/92286http://hdl.handle.net/10316/92286TID:202553329engRoque, Francisco José Diasinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T05:07:58Zoai:estudogeral.uc.pt:10316/92286Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:11:25.201210Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
title Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
spellingShingle Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
Roque, Francisco José Dias
Interface Cérebro-Computador (ICC)
Eletroencefalografia (EEG)
Código modulado por Potenciais Visuais Evocados (C-VEP)
Identificação Biométrica
Análise da Complexidade
Brain-Computer Interface (BCI)
Electroencephalography (EEG)
Code-modulated Visual Evoked Potentials (C-VEP)
Biometric Identification
Complexity Analysis
title_short Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
title_full Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
title_fullStr Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
title_full_unstemmed Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
title_sort Code-Modulated Visual Evoked Potentials for BCI and Biometric Authentication
author Roque, Francisco José Dias
author_facet Roque, Francisco José Dias
author_role author
dc.contributor.author.fl_str_mv Roque, Francisco José Dias
dc.subject.por.fl_str_mv Interface Cérebro-Computador (ICC)
Eletroencefalografia (EEG)
Código modulado por Potenciais Visuais Evocados (C-VEP)
Identificação Biométrica
Análise da Complexidade
Brain-Computer Interface (BCI)
Electroencephalography (EEG)
Code-modulated Visual Evoked Potentials (C-VEP)
Biometric Identification
Complexity Analysis
topic Interface Cérebro-Computador (ICC)
Eletroencefalografia (EEG)
Código modulado por Potenciais Visuais Evocados (C-VEP)
Identificação Biométrica
Análise da Complexidade
Brain-Computer Interface (BCI)
Electroencephalography (EEG)
Code-modulated Visual Evoked Potentials (C-VEP)
Biometric Identification
Complexity Analysis
description Dissertação de Mestrado Integrado em Engenharia Electrotécnica e de Computadores apresentada à Faculdade de Ciências e Tecnologia
publishDate 2020
dc.date.none.fl_str_mv 2020-11-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/92286
http://hdl.handle.net/10316/92286
TID:202553329
url http://hdl.handle.net/10316/92286
identifier_str_mv TID:202553329
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134011101020160