The obstacle problem at zero for the fractional p-Laplacian
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35306 |
Resumo: | In this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and controlling the degree at small balls and at big balls. |
id |
RCAP_6e96e1a6e7294dfa103ce891b79fd4a8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35306 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The obstacle problem at zero for the fractional p-LaplacianObstacle problemFractional p-LaplacianOperator of monotone typeDegree theoryNonsmooth analysisIn this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and controlling the degree at small balls and at big balls.Springer2022-11-25T10:33:56Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35306eng0927-694710.1007/s11228-020-00562-0Frassu, SilviaRocha, Eugénio M.Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:03Zoai:ria.ua.pt:10773/35306Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:03.813048Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The obstacle problem at zero for the fractional p-Laplacian |
title |
The obstacle problem at zero for the fractional p-Laplacian |
spellingShingle |
The obstacle problem at zero for the fractional p-Laplacian Frassu, Silvia Obstacle problem Fractional p-Laplacian Operator of monotone type Degree theory Nonsmooth analysis |
title_short |
The obstacle problem at zero for the fractional p-Laplacian |
title_full |
The obstacle problem at zero for the fractional p-Laplacian |
title_fullStr |
The obstacle problem at zero for the fractional p-Laplacian |
title_full_unstemmed |
The obstacle problem at zero for the fractional p-Laplacian |
title_sort |
The obstacle problem at zero for the fractional p-Laplacian |
author |
Frassu, Silvia |
author_facet |
Frassu, Silvia Rocha, Eugénio M. Staicu, Vasile |
author_role |
author |
author2 |
Rocha, Eugénio M. Staicu, Vasile |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Frassu, Silvia Rocha, Eugénio M. Staicu, Vasile |
dc.subject.por.fl_str_mv |
Obstacle problem Fractional p-Laplacian Operator of monotone type Degree theory Nonsmooth analysis |
topic |
Obstacle problem Fractional p-Laplacian Operator of monotone type Degree theory Nonsmooth analysis |
description |
In this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and controlling the degree at small balls and at big balls. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-25T10:33:56Z 2022-01-01T00:00:00Z 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35306 |
url |
http://hdl.handle.net/10773/35306 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0927-6947 10.1007/s11228-020-00562-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137685752774656 |