The obstacle problem at zero for the fractional p-Laplacian

Detalhes bibliográficos
Autor(a) principal: Frassu, Silvia
Data de Publicação: 2022
Outros Autores: Rocha, Eugénio M., Staicu, Vasile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35306
Resumo: In this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and controlling the degree at small balls and at big balls.
id RCAP_6e96e1a6e7294dfa103ce891b79fd4a8
oai_identifier_str oai:ria.ua.pt:10773/35306
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The obstacle problem at zero for the fractional p-LaplacianObstacle problemFractional p-LaplacianOperator of monotone typeDegree theoryNonsmooth analysisIn this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and controlling the degree at small balls and at big balls.Springer2022-11-25T10:33:56Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35306eng0927-694710.1007/s11228-020-00562-0Frassu, SilviaRocha, Eugénio M.Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:03Zoai:ria.ua.pt:10773/35306Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:03.813048Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The obstacle problem at zero for the fractional p-Laplacian
title The obstacle problem at zero for the fractional p-Laplacian
spellingShingle The obstacle problem at zero for the fractional p-Laplacian
Frassu, Silvia
Obstacle problem
Fractional p-Laplacian
Operator of monotone type
Degree theory
Nonsmooth analysis
title_short The obstacle problem at zero for the fractional p-Laplacian
title_full The obstacle problem at zero for the fractional p-Laplacian
title_fullStr The obstacle problem at zero for the fractional p-Laplacian
title_full_unstemmed The obstacle problem at zero for the fractional p-Laplacian
title_sort The obstacle problem at zero for the fractional p-Laplacian
author Frassu, Silvia
author_facet Frassu, Silvia
Rocha, Eugénio M.
Staicu, Vasile
author_role author
author2 Rocha, Eugénio M.
Staicu, Vasile
author2_role author
author
dc.contributor.author.fl_str_mv Frassu, Silvia
Rocha, Eugénio M.
Staicu, Vasile
dc.subject.por.fl_str_mv Obstacle problem
Fractional p-Laplacian
Operator of monotone type
Degree theory
Nonsmooth analysis
topic Obstacle problem
Fractional p-Laplacian
Operator of monotone type
Degree theory
Nonsmooth analysis
description In this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlocal problems with nonsmooth potential (variational-hemivariational inequalities), using the degree map of multivalued perturbations of fractional nonlinear operators of monotone type, the fact that the degree at a local minimizer of the corresponding Euler functional is equal one, and controlling the degree at small balls and at big balls.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-25T10:33:56Z
2022-01-01T00:00:00Z
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35306
url http://hdl.handle.net/10773/35306
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0927-6947
10.1007/s11228-020-00562-0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137685752774656