Data-driven staging of genetic frontotemporal dementia using multi-modal MRI

Detalhes bibliográficos
Autor(a) principal: McCarthy, Jillian
Data de Publicação: 2022
Outros Autores: Borroni, Barbara, Sánchez-Valle, Raquel, Moreno, Fermin, Laforce, Robert, Graff, Caroline, Synofzik, Matthis, Galimberti, Daniela, Rowe, James B, Masellis, Mario, Tartaglia, Maria Carmela, Finger, Elizabeth, Vandenberghe, Rik, de Mendonça, Alexandre, Tagliavini, Fabrizio, Santana, Isabel, Butler, Chris, Gerhard, Alex, Danek, Adrian, Levin, Johannes, Otto, Markus, Frisoni, Giovanni, Ghidoni, Roberta, Sorbi, Sandro, Jiskoot, Lize C, Seelaar, Harro, van Swieten, John C, Rohrer, Jonathan D., Iturria-Medina, Yasser, Ducharme, Simon
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
DOI: 10.1002/hbm.25727
Texto Completo: http://hdl.handle.net/10316/103293
https://doi.org/10.1002/hbm.25727
Resumo: Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
id RCAP_6f4bebf1e9016702a37cd8be344d2b28
oai_identifier_str oai:estudogeral.uc.pt:10316/103293
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Data-driven staging of genetic frontotemporal dementia using multi-modal MRIdisease progressionfrontotemporal dementiamagnetic resonance imagingunsupervised machine learningCross-Sectional StudiesHeterozygoteHumansLanguageMagnetic Resonance ImagingFrontotemporal DementiaFrontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103293http://hdl.handle.net/10316/103293https://doi.org/10.1002/hbm.25727eng1065-94711097-0193McCarthy, JillianBorroni, BarbaraSánchez-Valle, RaquelMoreno, FerminLaforce, RobertGraff, CarolineSynofzik, MatthisGalimberti, DanielaRowe, James BMasellis, MarioTartaglia, Maria CarmelaFinger, ElizabethVandenberghe, Rikde Mendonça, AlexandreTagliavini, FabrizioSantana, IsabelButler, ChrisGerhard, AlexDanek, AdrianLevin, JohannesOtto, MarkusFrisoni, GiovanniGhidoni, RobertaSorbi, SandroJiskoot, Lize CSeelaar, Harrovan Swieten, John CRohrer, Jonathan D.Iturria-Medina, YasserDucharme, Simoninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-03T21:33:46Zoai:estudogeral.uc.pt:10316/103293Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:09.142117Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
title Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
spellingShingle Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
McCarthy, Jillian
disease progression
frontotemporal dementia
magnetic resonance imaging
unsupervised machine learning
Cross-Sectional Studies
Heterozygote
Humans
Language
Magnetic Resonance Imaging
Frontotemporal Dementia
McCarthy, Jillian
disease progression
frontotemporal dementia
magnetic resonance imaging
unsupervised machine learning
Cross-Sectional Studies
Heterozygote
Humans
Language
Magnetic Resonance Imaging
Frontotemporal Dementia
title_short Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
title_full Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
title_fullStr Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
title_full_unstemmed Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
title_sort Data-driven staging of genetic frontotemporal dementia using multi-modal MRI
author McCarthy, Jillian
author_facet McCarthy, Jillian
McCarthy, Jillian
Borroni, Barbara
Sánchez-Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
de Mendonça, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Butler, Chris
Gerhard, Alex
Danek, Adrian
Levin, Johannes
Otto, Markus
Frisoni, Giovanni
Ghidoni, Roberta
Sorbi, Sandro
Jiskoot, Lize C
Seelaar, Harro
van Swieten, John C
Rohrer, Jonathan D.
Iturria-Medina, Yasser
Ducharme, Simon
Borroni, Barbara
Sánchez-Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
de Mendonça, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Butler, Chris
Gerhard, Alex
Danek, Adrian
Levin, Johannes
Otto, Markus
Frisoni, Giovanni
Ghidoni, Roberta
Sorbi, Sandro
Jiskoot, Lize C
Seelaar, Harro
van Swieten, John C
Rohrer, Jonathan D.
Iturria-Medina, Yasser
Ducharme, Simon
author_role author
author2 Borroni, Barbara
Sánchez-Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
de Mendonça, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Butler, Chris
Gerhard, Alex
Danek, Adrian
Levin, Johannes
Otto, Markus
Frisoni, Giovanni
Ghidoni, Roberta
Sorbi, Sandro
Jiskoot, Lize C
Seelaar, Harro
van Swieten, John C
Rohrer, Jonathan D.
Iturria-Medina, Yasser
Ducharme, Simon
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv McCarthy, Jillian
Borroni, Barbara
Sánchez-Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
de Mendonça, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Butler, Chris
Gerhard, Alex
Danek, Adrian
Levin, Johannes
Otto, Markus
Frisoni, Giovanni
Ghidoni, Roberta
Sorbi, Sandro
Jiskoot, Lize C
Seelaar, Harro
van Swieten, John C
Rohrer, Jonathan D.
Iturria-Medina, Yasser
Ducharme, Simon
dc.subject.por.fl_str_mv disease progression
frontotemporal dementia
magnetic resonance imaging
unsupervised machine learning
Cross-Sectional Studies
Heterozygote
Humans
Language
Magnetic Resonance Imaging
Frontotemporal Dementia
topic disease progression
frontotemporal dementia
magnetic resonance imaging
unsupervised machine learning
Cross-Sectional Studies
Heterozygote
Humans
Language
Magnetic Resonance Imaging
Frontotemporal Dementia
description Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/103293
http://hdl.handle.net/10316/103293
https://doi.org/10.1002/hbm.25727
url http://hdl.handle.net/10316/103293
https://doi.org/10.1002/hbm.25727
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1065-9471
1097-0193
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1822183446035824640
dc.identifier.doi.none.fl_str_mv 10.1002/hbm.25727