1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/18629 |
Resumo: | The effects of coating 'Rocha' pear with alginate-based nanoemulsions enriched with lemongrass essential oil (LG) was evaluated and compared to the usual 1-MCP treatment. Fruit were treated with 1-MCP (312 nL L-1) or coated with nanoemulsions: sodium alginate 2 % (w/w) + lemongrass essential oil 1.25 % (w/w) (LG 1.25 %) or lemongrass essential oil 2.5 % (w/w) (LG 2.5 %). Then, fruit were stored at 0 degrees C and 90-95 % relative humidity (RH), for eight months. Fruit samples were collected at harvest and after two, four, six and eight months of cold storage, and then transferred to shelf-life at 22 degrees C. Upon removal and after 7 d shelf-life, fruit symptoms of superficial scald and internal browning, ethylene production, color CIE (L*, hue), firmness, soluble solids content (SSC), titratable acidity (TA), weight loss, electrolytic leakage (EL), antioxidant activity and fatty acids of pear peel, microbial growth and sensory analyses were evaluated. Coatings and 1-MCP reduced fruit color evolution and preserved better firmness than control. Coatings and 1-MCP did not affect SSC and TA. Treatments did not influence the sensory quality. Microbial growth was within the safety limits in all treatments. Treatments with 1-MCP and LG-nanoemulsions were similarly efficient to reduce superficial scald, nevertheless the LG-nanoemulsions showed higher internal disorders after 8 months of storage and LG 2.5 % had higher decay at the same period, similar to control. 1-MCP treated fruit had the lowest softening rate after shelf-life up to 4 months and LG 2.5 % showed higher weight loss. Also, ethylene production was higher in control and LG 1.25 % up to 6 months plus shelf-life, while after 8 months there was no difference among treatments. This study suggests that 1-MCP is the most efficient for preserving quality of 'Rocha' pear for 8 months, while up to 6 months the best effect is obtained with LG 1.25 % nanocoatings. |
id |
RCAP_6f5710e74b29510d5bb31514a5582d24 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/18629 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pearPyrus communisNanoemulsionsRipeningScaldQuality1-MCPInternal browningThe effects of coating 'Rocha' pear with alginate-based nanoemulsions enriched with lemongrass essential oil (LG) was evaluated and compared to the usual 1-MCP treatment. Fruit were treated with 1-MCP (312 nL L-1) or coated with nanoemulsions: sodium alginate 2 % (w/w) + lemongrass essential oil 1.25 % (w/w) (LG 1.25 %) or lemongrass essential oil 2.5 % (w/w) (LG 2.5 %). Then, fruit were stored at 0 degrees C and 90-95 % relative humidity (RH), for eight months. Fruit samples were collected at harvest and after two, four, six and eight months of cold storage, and then transferred to shelf-life at 22 degrees C. Upon removal and after 7 d shelf-life, fruit symptoms of superficial scald and internal browning, ethylene production, color CIE (L*, hue), firmness, soluble solids content (SSC), titratable acidity (TA), weight loss, electrolytic leakage (EL), antioxidant activity and fatty acids of pear peel, microbial growth and sensory analyses were evaluated. Coatings and 1-MCP reduced fruit color evolution and preserved better firmness than control. Coatings and 1-MCP did not affect SSC and TA. Treatments did not influence the sensory quality. Microbial growth was within the safety limits in all treatments. Treatments with 1-MCP and LG-nanoemulsions were similarly efficient to reduce superficial scald, nevertheless the LG-nanoemulsions showed higher internal disorders after 8 months of storage and LG 2.5 % had higher decay at the same period, similar to control. 1-MCP treated fruit had the lowest softening rate after shelf-life up to 4 months and LG 2.5 % showed higher weight loss. Also, ethylene production was higher in control and LG 1.25 % up to 6 months plus shelf-life, while after 8 months there was no difference among treatments. This study suggests that 1-MCP is the most efficient for preserving quality of 'Rocha' pear for 8 months, while up to 6 months the best effect is obtained with LG 1.25 % nanocoatings.ElsevierSapientiaGago, CustódiaGuerreiro, AdrianaCruz, SandraMartins, NunoCabrita, Maria JoãoMiguel, MariaFaleiro, Maria LeonorAntunes, Maria Dulce2022-12-13T10:19:56Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/18629eng0925-521410.1016/j.postharvbio.2022.111992info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:30:55Zoai:sapientia.ualg.pt:10400.1/18629Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:08:23.007447Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear |
title |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear |
spellingShingle |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear Gago, Custódia Pyrus communis Nanoemulsions Ripening Scald Quality 1-MCP Internal browning |
title_short |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear |
title_full |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear |
title_fullStr |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear |
title_full_unstemmed |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear |
title_sort |
1-Methylcyclopropene and lemongrass essential oil nanocoatings effect on the preservation of cold stored ‘Rocha’ pear |
author |
Gago, Custódia |
author_facet |
Gago, Custódia Guerreiro, Adriana Cruz, Sandra Martins, Nuno Cabrita, Maria João Miguel, Maria Faleiro, Maria Leonor Antunes, Maria Dulce |
author_role |
author |
author2 |
Guerreiro, Adriana Cruz, Sandra Martins, Nuno Cabrita, Maria João Miguel, Maria Faleiro, Maria Leonor Antunes, Maria Dulce |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Gago, Custódia Guerreiro, Adriana Cruz, Sandra Martins, Nuno Cabrita, Maria João Miguel, Maria Faleiro, Maria Leonor Antunes, Maria Dulce |
dc.subject.por.fl_str_mv |
Pyrus communis Nanoemulsions Ripening Scald Quality 1-MCP Internal browning |
topic |
Pyrus communis Nanoemulsions Ripening Scald Quality 1-MCP Internal browning |
description |
The effects of coating 'Rocha' pear with alginate-based nanoemulsions enriched with lemongrass essential oil (LG) was evaluated and compared to the usual 1-MCP treatment. Fruit were treated with 1-MCP (312 nL L-1) or coated with nanoemulsions: sodium alginate 2 % (w/w) + lemongrass essential oil 1.25 % (w/w) (LG 1.25 %) or lemongrass essential oil 2.5 % (w/w) (LG 2.5 %). Then, fruit were stored at 0 degrees C and 90-95 % relative humidity (RH), for eight months. Fruit samples were collected at harvest and after two, four, six and eight months of cold storage, and then transferred to shelf-life at 22 degrees C. Upon removal and after 7 d shelf-life, fruit symptoms of superficial scald and internal browning, ethylene production, color CIE (L*, hue), firmness, soluble solids content (SSC), titratable acidity (TA), weight loss, electrolytic leakage (EL), antioxidant activity and fatty acids of pear peel, microbial growth and sensory analyses were evaluated. Coatings and 1-MCP reduced fruit color evolution and preserved better firmness than control. Coatings and 1-MCP did not affect SSC and TA. Treatments did not influence the sensory quality. Microbial growth was within the safety limits in all treatments. Treatments with 1-MCP and LG-nanoemulsions were similarly efficient to reduce superficial scald, nevertheless the LG-nanoemulsions showed higher internal disorders after 8 months of storage and LG 2.5 % had higher decay at the same period, similar to control. 1-MCP treated fruit had the lowest softening rate after shelf-life up to 4 months and LG 2.5 % showed higher weight loss. Also, ethylene production was higher in control and LG 1.25 % up to 6 months plus shelf-life, while after 8 months there was no difference among treatments. This study suggests that 1-MCP is the most efficient for preserving quality of 'Rocha' pear for 8 months, while up to 6 months the best effect is obtained with LG 1.25 % nanocoatings. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-13T10:19:56Z 2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/18629 |
url |
http://hdl.handle.net/10400.1/18629 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0925-5214 10.1016/j.postharvbio.2022.111992 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133329472094209 |