Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/164075 |
Resumo: | Funding Information: Open access funding provided by FCT|FCCN (b-on). This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023, The Author(s). |
id |
RCAP_6fc31eef8e60fa3dface1ccbdb40288a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/164075 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Regularization Methods for High-Dimensional Data as a Tool for Seafood TraceabilityElastic netLASSORegularizationRidge regressionTraceabilityStatistics and ProbabilitySDG 3 - Good Health and Well-beingSDG 14 - Life Below WaterFunding Information: Open access funding provided by FCT|FCCN (b-on). This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023, The Author(s).Seafood traceability, needed to regulate food safety, control fisheries, combat fraud, and prevent jeopardizing public health from harvesting in polluted locations, depends heavily on the prediction of the geographic origin of seafood. When the available datasets to study traceability are high-dimensional, standard classic statistical models fail. Under these circumstances, proper alternative methods are needed to predict accurately the geographic origin of seafood. In this study, we propose an analytical approach combining the use of regularization methods and resampling techniques to overcome the high-dimensionality problem. In particular, we analyze comparatively the Ridge regression, LASSO and Elastic net penalty-based approaches. These methods were applied to predict the origin of the saltwater clam Ruditapes philippinarum, a non-indigenous and commercially very relevant marine bivalve species that occurs commonly in European estuaries. Further, the resampling method of Monte Carlo Cross-Validation was implemented to overcome challenges related to the small sample size. The results of the three methods were compared. For fully reproducibility, an R Markdown file and the used dataset are provided. We conclude highlighting the insights that this methodology may bring to model a multi-categorical response based on high-dimensional dataset, with highly correlated explanatory variables, and combat the mislabeling of geographic origin of seafood.CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaRUNYokochi, ClaraBispo, ReginaRicardo, FernandoCalado, Ricardo2024-02-23T23:55:28Z2023-092023-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21application/pdfhttp://hdl.handle.net/10362/164075eng1559-8608PURE: 83886940https://doi.org/10.1007/s42519-023-00341-8info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:50:40Zoai:run.unl.pt:10362/164075Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:00:02.034563Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability |
title |
Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability |
spellingShingle |
Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability Yokochi, Clara Elastic net LASSO Regularization Ridge regression Traceability Statistics and Probability SDG 3 - Good Health and Well-being SDG 14 - Life Below Water |
title_short |
Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability |
title_full |
Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability |
title_fullStr |
Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability |
title_full_unstemmed |
Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability |
title_sort |
Regularization Methods for High-Dimensional Data as a Tool for Seafood Traceability |
author |
Yokochi, Clara |
author_facet |
Yokochi, Clara Bispo, Regina Ricardo, Fernando Calado, Ricardo |
author_role |
author |
author2 |
Bispo, Regina Ricardo, Fernando Calado, Ricardo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
CMA - Centro de Matemática e Aplicações DM - Departamento de Matemática RUN |
dc.contributor.author.fl_str_mv |
Yokochi, Clara Bispo, Regina Ricardo, Fernando Calado, Ricardo |
dc.subject.por.fl_str_mv |
Elastic net LASSO Regularization Ridge regression Traceability Statistics and Probability SDG 3 - Good Health and Well-being SDG 14 - Life Below Water |
topic |
Elastic net LASSO Regularization Ridge regression Traceability Statistics and Probability SDG 3 - Good Health and Well-being SDG 14 - Life Below Water |
description |
Funding Information: Open access funding provided by FCT|FCCN (b-on). This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Publisher Copyright: © 2023, The Author(s). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 2023-09-01T00:00:00Z 2024-02-23T23:55:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/164075 |
url |
http://hdl.handle.net/10362/164075 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1559-8608 PURE: 83886940 https://doi.org/10.1007/s42519-023-00341-8 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138176470614016 |