Predicting Days on Market to Optimize Real Estate Sales Strategy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/94978 |
Resumo: | Castelli, M., Dobreva, M., Henriques, R., & Vanneschi, L. (2020). Predicting Days on Market to Optimize Real Estate Sales Strategy. Complexity, 2020, 1-22. [4603190]. https://doi.org/10.1155/2020/4603190 -------This work was supported by national funds through the FCT (Fundacao para a Ciencia e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCI-INF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410). |
id |
RCAP_879b7aa419f12a277d73ae8e6e016753 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/94978 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting Days on Market to Optimize Real Estate Sales StrategyMachine learning algorithmsArtificial Neural NetworksLassoRidgeElastic NetComputer Science(all)GeneralSDG 9 - Industry, Innovation, and InfrastructureSDG 11 - Sustainable Cities and CommunitiesCastelli, M., Dobreva, M., Henriques, R., & Vanneschi, L. (2020). Predicting Days on Market to Optimize Real Estate Sales Strategy. Complexity, 2020, 1-22. [4603190]. https://doi.org/10.1155/2020/4603190 -------This work was supported by national funds through the FCT (Fundacao para a Ciencia e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCI-INF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410).Irregularities and frauds are frequent in the real estate market in Bulgaria due to the substantial lack of rigorous legislation. For instance, agencies frequently publish unreal or unavailable apartment listings for a cheap price, as a method to attract the attention of unaware potential new customers. For this reason, systems able to identify unreal listings and improve the transparency of listings authenticity and availability are much on demand. Recent research has highlighted that the number of days a published listing remains online can have a strong correlation with the probability of a listing being unreal. For this reason, building an accurate predictive model for the number of days a published listing will be online can be very helpful to accomplish the task of identifying fake listings. In this paper, we investigate the use of four different machine learning algorithms for this task: Lasso, Ridge, Elastic Net, and Artificial Neural Networks. The results, obtained on a vast dataset made available by the Bulgarian company Homeheed, show the appropriateness of Lasso regression.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCastelli, MauroDobreva, MariaHenriques, RobertoVanneschi, Leonardo2020-03-24T23:39:24Z2020-02-252020-02-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article22application/pdfhttp://hdl.handle.net/10362/94978eng1076-2787PURE: 17450350https://doi.org/10.1155/2020/4603190info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:42:59Zoai:run.unl.pt:10362/94978Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:38:10.549525Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting Days on Market to Optimize Real Estate Sales Strategy |
title |
Predicting Days on Market to Optimize Real Estate Sales Strategy |
spellingShingle |
Predicting Days on Market to Optimize Real Estate Sales Strategy Castelli, Mauro Machine learning algorithms Artificial Neural Networks Lasso Ridge Elastic Net Computer Science(all) General SDG 9 - Industry, Innovation, and Infrastructure SDG 11 - Sustainable Cities and Communities |
title_short |
Predicting Days on Market to Optimize Real Estate Sales Strategy |
title_full |
Predicting Days on Market to Optimize Real Estate Sales Strategy |
title_fullStr |
Predicting Days on Market to Optimize Real Estate Sales Strategy |
title_full_unstemmed |
Predicting Days on Market to Optimize Real Estate Sales Strategy |
title_sort |
Predicting Days on Market to Optimize Real Estate Sales Strategy |
author |
Castelli, Mauro |
author_facet |
Castelli, Mauro Dobreva, Maria Henriques, Roberto Vanneschi, Leonardo |
author_role |
author |
author2 |
Dobreva, Maria Henriques, Roberto Vanneschi, Leonardo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Castelli, Mauro Dobreva, Maria Henriques, Roberto Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Machine learning algorithms Artificial Neural Networks Lasso Ridge Elastic Net Computer Science(all) General SDG 9 - Industry, Innovation, and Infrastructure SDG 11 - Sustainable Cities and Communities |
topic |
Machine learning algorithms Artificial Neural Networks Lasso Ridge Elastic Net Computer Science(all) General SDG 9 - Industry, Innovation, and Infrastructure SDG 11 - Sustainable Cities and Communities |
description |
Castelli, M., Dobreva, M., Henriques, R., & Vanneschi, L. (2020). Predicting Days on Market to Optimize Real Estate Sales Strategy. Complexity, 2020, 1-22. [4603190]. https://doi.org/10.1155/2020/4603190 -------This work was supported by national funds through the FCT (Fundacao para a Ciencia e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCI-INF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-24T23:39:24Z 2020-02-25 2020-02-25T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/94978 |
url |
http://hdl.handle.net/10362/94978 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1076-2787 PURE: 17450350 https://doi.org/10.1155/2020/4603190 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
22 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137997954744320 |