Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN

Detalhes bibliográficos
Autor(a) principal: Bacquelaine, Françoise
Data de Publicação: 2018
Tipo de documento: Livro
Idioma: fra
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/119701
Resumo: Machine Translation (MT) has been a lively field of research eversince the invention of the computer. Rule-Based Machine Translation (RBMT) wasthe first option back in the 1940s-1950s; Statistical Machine Translation (SMT)appeared a few decades later and Neural Machine Translation (NMT) in the 21stcentury. This distinction is not strict since most MT systems are now hybrid, butnatural language ambiguity is a well-known pitfall, be it in human or machinetranslation.Two types of ambiguity can arise when using the rather common Englishword issue: "grammatical ambiguity" (noun or verb?), on the one hand, and"homographic and polysemic ambiguity (one word form with different sensesin the source language)" (Hutchins 2005: 17), on the other hand. The scope ofthis research is limited to three senses of the noun issue (1. An important topic orproblem for debate or discussion; 2. The action of supplying or distributing an itemfor use, sale, or official; 3. (formal or law) Children of one's own) and two sensesof the verb to issue (1. [WITH OBJECT] Supply or distribute (something) for useor sale; 2. [NO OBJECT] (issue from) Come, go, or flow out from). A sample ofsentences containing at least one example of usage was selected from the BritishNational Corpus in order to test and compare four English-French MT systems:SYSTRAN (free online RBMT), Google Translate (free online SMT), MT@EC(restricted access SMT) and free online Neural Machine Translation by LISA(University of Montreal). The outputs were compared to a human translation modelbased on translation memories (parallel corpora) in order to evaluate weaknessesand strengths of each system, compare the results and find out possible ways ofimproving MT output through hybridisation.Research results in cases like these are not just useful for theoreticallinguistics but can also be used to heighten awareness in human translators anddemonstrate that translators who are trained in computational linguistics can alsowork together with experts in artificial intelligence and machine translation.
id RCAP_7086d2ce191feb7f438f162d43acedb2
oai_identifier_str oai:repositorio-aberto.up.pt:10216/119701
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TANHumanidadesHumanitiesMachine Translation (MT) has been a lively field of research eversince the invention of the computer. Rule-Based Machine Translation (RBMT) wasthe first option back in the 1940s-1950s; Statistical Machine Translation (SMT)appeared a few decades later and Neural Machine Translation (NMT) in the 21stcentury. This distinction is not strict since most MT systems are now hybrid, butnatural language ambiguity is a well-known pitfall, be it in human or machinetranslation.Two types of ambiguity can arise when using the rather common Englishword issue: "grammatical ambiguity" (noun or verb?), on the one hand, and"homographic and polysemic ambiguity (one word form with different sensesin the source language)" (Hutchins 2005: 17), on the other hand. The scope ofthis research is limited to three senses of the noun issue (1. An important topic orproblem for debate or discussion; 2. The action of supplying or distributing an itemfor use, sale, or official; 3. (formal or law) Children of one's own) and two sensesof the verb to issue (1. [WITH OBJECT] Supply or distribute (something) for useor sale; 2. [NO OBJECT] (issue from) Come, go, or flow out from). A sample ofsentences containing at least one example of usage was selected from the BritishNational Corpus in order to test and compare four English-French MT systems:SYSTRAN (free online RBMT), Google Translate (free online SMT), MT@EC(restricted access SMT) and free online Neural Machine Translation by LISA(University of Montreal). The outputs were compared to a human translation modelbased on translation memories (parallel corpora) in order to evaluate weaknessesand strengths of each system, compare the results and find out possible ways ofimproving MT output through hybridisation.Research results in cases like these are not just useful for theoreticallinguistics but can also be used to heighten awareness in human translators anddemonstrate that translators who are trained in computational linguistics can alsowork together with experts in artificial intelligence and machine translation.20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/119701fraBacquelaine, Françoiseinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:31:08Zoai:repositorio-aberto.up.pt:10216/119701Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:02:58.818404Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN
title Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN
spellingShingle Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN
Bacquelaine, Françoise
Humanidades
Humanities
title_short Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN
title_full Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN
title_fullStr Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN
title_full_unstemmed Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN
title_sort Systèmes de traduction automatique et levée d'ambiguïté: étude comparée de systèmes de TABR, TAS et TAN
author Bacquelaine, Françoise
author_facet Bacquelaine, Françoise
author_role author
dc.contributor.author.fl_str_mv Bacquelaine, Françoise
dc.subject.por.fl_str_mv Humanidades
Humanities
topic Humanidades
Humanities
description Machine Translation (MT) has been a lively field of research eversince the invention of the computer. Rule-Based Machine Translation (RBMT) wasthe first option back in the 1940s-1950s; Statistical Machine Translation (SMT)appeared a few decades later and Neural Machine Translation (NMT) in the 21stcentury. This distinction is not strict since most MT systems are now hybrid, butnatural language ambiguity is a well-known pitfall, be it in human or machinetranslation.Two types of ambiguity can arise when using the rather common Englishword issue: "grammatical ambiguity" (noun or verb?), on the one hand, and"homographic and polysemic ambiguity (one word form with different sensesin the source language)" (Hutchins 2005: 17), on the other hand. The scope ofthis research is limited to three senses of the noun issue (1. An important topic orproblem for debate or discussion; 2. The action of supplying or distributing an itemfor use, sale, or official; 3. (formal or law) Children of one's own) and two sensesof the verb to issue (1. [WITH OBJECT] Supply or distribute (something) for useor sale; 2. [NO OBJECT] (issue from) Come, go, or flow out from). A sample ofsentences containing at least one example of usage was selected from the BritishNational Corpus in order to test and compare four English-French MT systems:SYSTRAN (free online RBMT), Google Translate (free online SMT), MT@EC(restricted access SMT) and free online Neural Machine Translation by LISA(University of Montreal). The outputs were compared to a human translation modelbased on translation memories (parallel corpora) in order to evaluate weaknessesand strengths of each system, compare the results and find out possible ways ofimproving MT output through hybridisation.Research results in cases like these are not just useful for theoreticallinguistics but can also be used to heighten awareness in human translators anddemonstrate that translators who are trained in computational linguistics can alsowork together with experts in artificial intelligence and machine translation.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/119701
url https://hdl.handle.net/10216/119701
dc.language.iso.fl_str_mv fra
language fra
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135954161631232