Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/29599 |
Resumo: | This thesis analyzes how data from public data sources and machine learning models can be used to forecast electricity consumption in Portugal. Accurate forecasts are crucial for efficient energy management, given the rising global demand for energy. Portugal presents a compelling case for consumption projections since it significantly relies on energy imports and suffers from poverty. The study uses a data-driven methodology to analyze twelve years of consumption patterns and examine how the COVID-19 pandemic, weather patterns, and GDP affect electricity use. Five predictive models were studied - SARIMA, SARIMAX, VAR, SVR and LSTM - and their performance indicators in two different periods (one for the twelve years of analysis, including during Covid-19, and the other only for data before Covid-19). Thus, this study makes it possible to evaluate the performance of machine learning models in stable and non-stable periods. The study acknowledges its limitations, such as the lack of data in the post-COVID era, while providing valuable insights for developing and managing energy policies. |
id |
RCAP_7099b5739a1396aeb7f2e843f41d663d |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/29599 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in PortugalElectricity consumptionMachine learningCOVID-19 pandemicPredictive modelsConsumo de eletricidadePandemia COVID-19Modelos preditivosThis thesis analyzes how data from public data sources and machine learning models can be used to forecast electricity consumption in Portugal. Accurate forecasts are crucial for efficient energy management, given the rising global demand for energy. Portugal presents a compelling case for consumption projections since it significantly relies on energy imports and suffers from poverty. The study uses a data-driven methodology to analyze twelve years of consumption patterns and examine how the COVID-19 pandemic, weather patterns, and GDP affect electricity use. Five predictive models were studied - SARIMA, SARIMAX, VAR, SVR and LSTM - and their performance indicators in two different periods (one for the twelve years of analysis, including during Covid-19, and the other only for data before Covid-19). Thus, this study makes it possible to evaluate the performance of machine learning models in stable and non-stable periods. The study acknowledges its limitations, such as the lack of data in the post-COVID era, while providing valuable insights for developing and managing energy policies.Esta tese analisa a forma como os modelos de “machine learning” e os dados provenientes de fontes de dados públicas podem ser utilizados para prever o consumo de eletricidade em Portugal. Boas previsões são cruciais para uma gestão eficiente do setor energético, nomeadamente devido ao aumento da procura global de energia. Portugal apresenta um ótimo caso para a previsão de consumo, uma vez que depende significativamente de importações de energia e sofre de pobreza energética. O estudo utiliza uma metodologia baseada em dados para analisar doze anos de padrões de consumo energético e analisar a forma como a pandemia do COVID-19, os padrões climáticos e o PIB afetam o consumo de eletricidade. Foram estudados cinco modelos preditivos - SARIMA, SARIMAX, VAR, SVR e LSTM – e os seus indicadores de desempenho em dois períodos diferentes (um para os doze anos de analise, incluído durante o Covid-19, e outro apenas para dados antes do Covid-19). Assim, este estudo permite avaliar a prestação dos modelos de machine learning em periodos estáveis e não estáveis O estudo reconhece as suas limitações, como a falta de dados na era pós-COVID, mas continua a fornecer informações úteis para o desenvolvimento e a gestão de políticas energéticas.2023-11-15T11:51:09Z2023-11-09T00:00:00Z2023-11-092023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/29599TID:203384032engSucena, Ana Sofia Lobatoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-19T01:17:21Zoai:repositorio.iscte-iul.pt:10071/29599Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:54:05.194421Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal |
title |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal |
spellingShingle |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal Sucena, Ana Sofia Lobato Electricity consumption Machine learning COVID-19 pandemic Predictive models Consumo de eletricidade Pandemia COVID-19 Modelos preditivos |
title_short |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal |
title_full |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal |
title_fullStr |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal |
title_full_unstemmed |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal |
title_sort |
Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal |
author |
Sucena, Ana Sofia Lobato |
author_facet |
Sucena, Ana Sofia Lobato |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sucena, Ana Sofia Lobato |
dc.subject.por.fl_str_mv |
Electricity consumption Machine learning COVID-19 pandemic Predictive models Consumo de eletricidade Pandemia COVID-19 Modelos preditivos |
topic |
Electricity consumption Machine learning COVID-19 pandemic Predictive models Consumo de eletricidade Pandemia COVID-19 Modelos preditivos |
description |
This thesis analyzes how data from public data sources and machine learning models can be used to forecast electricity consumption in Portugal. Accurate forecasts are crucial for efficient energy management, given the rising global demand for energy. Portugal presents a compelling case for consumption projections since it significantly relies on energy imports and suffers from poverty. The study uses a data-driven methodology to analyze twelve years of consumption patterns and examine how the COVID-19 pandemic, weather patterns, and GDP affect electricity use. Five predictive models were studied - SARIMA, SARIMAX, VAR, SVR and LSTM - and their performance indicators in two different periods (one for the twelve years of analysis, including during Covid-19, and the other only for data before Covid-19). Thus, this study makes it possible to evaluate the performance of machine learning models in stable and non-stable periods. The study acknowledges its limitations, such as the lack of data in the post-COVID era, while providing valuable insights for developing and managing energy policies. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-15T11:51:09Z 2023-11-09T00:00:00Z 2023-11-09 2023-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/29599 TID:203384032 |
url |
http://hdl.handle.net/10071/29599 |
identifier_str_mv |
TID:203384032 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135138953560064 |