Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal

Detalhes bibliográficos
Autor(a) principal: Sucena, Ana Sofia Lobato
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/29599
Resumo: This thesis analyzes how data from public data sources and machine learning models can be used to forecast electricity consumption in Portugal. Accurate forecasts are crucial for efficient energy management, given the rising global demand for energy. Portugal presents a compelling case for consumption projections since it significantly relies on energy imports and suffers from poverty. The study uses a data-driven methodology to analyze twelve years of consumption patterns and examine how the COVID-19 pandemic, weather patterns, and GDP affect electricity use. Five predictive models were studied - SARIMA, SARIMAX, VAR, SVR and LSTM - and their performance indicators in two different periods (one for the twelve years of analysis, including during Covid-19, and the other only for data before Covid-19). Thus, this study makes it possible to evaluate the performance of machine learning models in stable and non-stable periods. The study acknowledges its limitations, such as the lack of data in the post-COVID era, while providing valuable insights for developing and managing energy policies.
id RCAP_7099b5739a1396aeb7f2e843f41d663d
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/29599
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Machine learning models to predict electricity consumption and the impacts of COVID-19 in PortugalElectricity consumptionMachine learningCOVID-19 pandemicPredictive modelsConsumo de eletricidadePandemia COVID-19Modelos preditivosThis thesis analyzes how data from public data sources and machine learning models can be used to forecast electricity consumption in Portugal. Accurate forecasts are crucial for efficient energy management, given the rising global demand for energy. Portugal presents a compelling case for consumption projections since it significantly relies on energy imports and suffers from poverty. The study uses a data-driven methodology to analyze twelve years of consumption patterns and examine how the COVID-19 pandemic, weather patterns, and GDP affect electricity use. Five predictive models were studied - SARIMA, SARIMAX, VAR, SVR and LSTM - and their performance indicators in two different periods (one for the twelve years of analysis, including during Covid-19, and the other only for data before Covid-19). Thus, this study makes it possible to evaluate the performance of machine learning models in stable and non-stable periods. The study acknowledges its limitations, such as the lack of data in the post-COVID era, while providing valuable insights for developing and managing energy policies.Esta tese analisa a forma como os modelos de “machine learning” e os dados provenientes de fontes de dados públicas podem ser utilizados para prever o consumo de eletricidade em Portugal. Boas previsões são cruciais para uma gestão eficiente do setor energético, nomeadamente devido ao aumento da procura global de energia. Portugal apresenta um ótimo caso para a previsão de consumo, uma vez que depende significativamente de importações de energia e sofre de pobreza energética. O estudo utiliza uma metodologia baseada em dados para analisar doze anos de padrões de consumo energético e analisar a forma como a pandemia do COVID-19, os padrões climáticos e o PIB afetam o consumo de eletricidade. Foram estudados cinco modelos preditivos - SARIMA, SARIMAX, VAR, SVR e LSTM – e os seus indicadores de desempenho em dois períodos diferentes (um para os doze anos de analise, incluído durante o Covid-19, e outro apenas para dados antes do Covid-19). Assim, este estudo permite avaliar a prestação dos modelos de machine learning em periodos estáveis e não estáveis O estudo reconhece as suas limitações, como a falta de dados na era pós-COVID, mas continua a fornecer informações úteis para o desenvolvimento e a gestão de políticas energéticas.2023-11-15T11:51:09Z2023-11-09T00:00:00Z2023-11-092023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/29599TID:203384032engSucena, Ana Sofia Lobatoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-19T01:17:21Zoai:repositorio.iscte-iul.pt:10071/29599Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:54:05.194421Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
title Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
spellingShingle Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
Sucena, Ana Sofia Lobato
Electricity consumption
Machine learning
COVID-19 pandemic
Predictive models
Consumo de eletricidade
Pandemia COVID-19
Modelos preditivos
title_short Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
title_full Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
title_fullStr Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
title_full_unstemmed Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
title_sort Machine learning models to predict electricity consumption and the impacts of COVID-19 in Portugal
author Sucena, Ana Sofia Lobato
author_facet Sucena, Ana Sofia Lobato
author_role author
dc.contributor.author.fl_str_mv Sucena, Ana Sofia Lobato
dc.subject.por.fl_str_mv Electricity consumption
Machine learning
COVID-19 pandemic
Predictive models
Consumo de eletricidade
Pandemia COVID-19
Modelos preditivos
topic Electricity consumption
Machine learning
COVID-19 pandemic
Predictive models
Consumo de eletricidade
Pandemia COVID-19
Modelos preditivos
description This thesis analyzes how data from public data sources and machine learning models can be used to forecast electricity consumption in Portugal. Accurate forecasts are crucial for efficient energy management, given the rising global demand for energy. Portugal presents a compelling case for consumption projections since it significantly relies on energy imports and suffers from poverty. The study uses a data-driven methodology to analyze twelve years of consumption patterns and examine how the COVID-19 pandemic, weather patterns, and GDP affect electricity use. Five predictive models were studied - SARIMA, SARIMAX, VAR, SVR and LSTM - and their performance indicators in two different periods (one for the twelve years of analysis, including during Covid-19, and the other only for data before Covid-19). Thus, this study makes it possible to evaluate the performance of machine learning models in stable and non-stable periods. The study acknowledges its limitations, such as the lack of data in the post-COVID era, while providing valuable insights for developing and managing energy policies.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-15T11:51:09Z
2023-11-09T00:00:00Z
2023-11-09
2023-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/29599
TID:203384032
url http://hdl.handle.net/10071/29599
identifier_str_mv TID:203384032
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135138953560064