Tip4.0
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/145960 |
Resumo: | POCI-01-0247-FEDER-038436 |
id |
RCAP_718d7b02724dc1fa7576af400dda0a10 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/145960 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Tip4.0Industrial internet of things platform for predictive maintenanceArtificial intelligenceEdge computingIndustry 4.0Internet of thingsPredictive maintenanceAnalytical ChemistryInformation SystemsAtomic and Molecular Physics, and OpticsBiochemistryInstrumentationElectrical and Electronic EngineeringSDG 9 - Industry, Innovation, and InfrastructureSDG 16 - Peace, Justice and Strong InstitutionsPOCI-01-0247-FEDER-038436Industry 4.0, allied with the growth and democratization of Artificial Intelligence (AI) and the advent of IoT, is paving the way for the complete digitization and automation of industrial processes. Maintenance is one of these processes, where the introduction of a predictive approach, as opposed to the traditional techniques, is expected to considerably improve the industry maintenance strategies with gains such as reduced downtime, improved equipment effectiveness, lower maintenance costs, increased return on assets, risk mitigation, and, ultimately, profitable growth. With predictive maintenance, dedicated sensors monitor the critical points of assets. The sensor data then feed into machine learning algorithms that can infer the asset health status and inform operators and decision-makers. With this in mind, in this paper, we present TIP4.0, a platform for predictive maintenance based on a modular software solution for edge computing gateways. TIP4.0 is built around Yocto, which makes it readily available and compliant with Commercial Off-the-Shelf (COTS) or proprietary hardware. TIP4.0 was conceived with an industry mindset with communication interfaces that allow it to serve sensor networks in the shop floor and modular software architecture that allows it to be easily adjusted to new deployment scenarios. To showcase its potential, the TIP4.0 platform was validated over COTS hardware, and we considered a public data-set for the simulation of predictive maintenance scenarios. We used a Convolution Neural Network (CNN) architecture, which provided competitive performance over the state-of-the-art approaches, while being approximately four-times and two-times faster than the uncompressed model inference on the Central Processing Unit (CPU) and Graphical Processing Unit, respectively. These results highlight the capabilities of distributed large-scale edge computing over industrial scenarios.DF – Departamento de FísicaLIBPhys-UNLRUNResende, CarlosFolgado, DuarteOliveira, JoãoFranco, BernardoMoreira, WaldirOliveira-Jr, AntonioCavaleiro, ArmandoCarvalho, Ricardo2022-12-02T22:14:37Z2021-07-082021-07-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article23application/pdfhttp://hdl.handle.net/10362/145960eng1424-8220PURE: 45613304https://doi.org/10.3390/s21144676info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:26:50Zoai:run.unl.pt:10362/145960Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:22.274195Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Tip4.0 Industrial internet of things platform for predictive maintenance |
title |
Tip4.0 |
spellingShingle |
Tip4.0 Resende, Carlos Artificial intelligence Edge computing Industry 4.0 Internet of things Predictive maintenance Analytical Chemistry Information Systems Atomic and Molecular Physics, and Optics Biochemistry Instrumentation Electrical and Electronic Engineering SDG 9 - Industry, Innovation, and Infrastructure SDG 16 - Peace, Justice and Strong Institutions |
title_short |
Tip4.0 |
title_full |
Tip4.0 |
title_fullStr |
Tip4.0 |
title_full_unstemmed |
Tip4.0 |
title_sort |
Tip4.0 |
author |
Resende, Carlos |
author_facet |
Resende, Carlos Folgado, Duarte Oliveira, João Franco, Bernardo Moreira, Waldir Oliveira-Jr, Antonio Cavaleiro, Armando Carvalho, Ricardo |
author_role |
author |
author2 |
Folgado, Duarte Oliveira, João Franco, Bernardo Moreira, Waldir Oliveira-Jr, Antonio Cavaleiro, Armando Carvalho, Ricardo |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
DF – Departamento de Física LIBPhys-UNL RUN |
dc.contributor.author.fl_str_mv |
Resende, Carlos Folgado, Duarte Oliveira, João Franco, Bernardo Moreira, Waldir Oliveira-Jr, Antonio Cavaleiro, Armando Carvalho, Ricardo |
dc.subject.por.fl_str_mv |
Artificial intelligence Edge computing Industry 4.0 Internet of things Predictive maintenance Analytical Chemistry Information Systems Atomic and Molecular Physics, and Optics Biochemistry Instrumentation Electrical and Electronic Engineering SDG 9 - Industry, Innovation, and Infrastructure SDG 16 - Peace, Justice and Strong Institutions |
topic |
Artificial intelligence Edge computing Industry 4.0 Internet of things Predictive maintenance Analytical Chemistry Information Systems Atomic and Molecular Physics, and Optics Biochemistry Instrumentation Electrical and Electronic Engineering SDG 9 - Industry, Innovation, and Infrastructure SDG 16 - Peace, Justice and Strong Institutions |
description |
POCI-01-0247-FEDER-038436 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-08 2021-07-08T00:00:00Z 2022-12-02T22:14:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/145960 |
url |
http://hdl.handle.net/10362/145960 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1424-8220 PURE: 45613304 https://doi.org/10.3390/s21144676 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
23 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138115139403776 |