Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/19928 |
Resumo: | Concerns about plastic pollution and its toxicity towards animals and people are growing. Polystyrene (PS) is a plastic polymer highly produced in Europe for packaging purposes and building insulation amongst others. Whatever their source—illegal dumping, improper waste management, or a lack of treatment for the removal of plastic debris from wastewater treatment plants—PS products ultimately end up in the marine environment. Nanoplastics (<1000 nm) are the new focus for plastic pollution, gaining broad interest. Whether primary or secondary, their small size permits nanoparticles to cross cellular boundaries, consequently leading to adverse toxic effects. An in vitro assay of Mytilus galloprovincialis haemocytes exposed to 10 μg/L of polystyrene nanoplastics (PS-NPs; 50 nm) for 24 h was used to test cellular viability along with the luminescence inhibition (LC50) of Aliivibrio fischeri bacteria to evaluate acute toxicity. Cellular viability of mussel haemocytes decreased significantly after a 24 h exposure and PS-NPs LC50 range from 180 to 217, μg/L. In addition, a 28-day exposure of the marine bivalve M. galloprovincialis to PS-NPs (10 μg/L; 50 nm) was performed to evaluate the neurotoxic effects and the uptake of these plastic particles in three bivalve tissues (gills, digestive gland, and gonads). The ingestion of PS-NPs was time- and tissue-specific, suggesting that PS-NPs are ingested through the gills and then translocated through the mussel bloodstream, to the digestive gland and gonads where the highest amount of ingested PS-NPs was reported. Ingested PS-NPs may compromise the digestive glands’ key metabolic function and impair mussels’ gametogenic and reproductive success. Data on acetylcholinesterase inhibition and those previously obtained on a wide range of cellular biomarkers were elaborated through weighted criteria providing a synthetic assessment of cellular hazard from PS-NPs. |
id |
RCAP_726e565954394fedca7f372ab654ee44 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/19928 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialisPolystyrene nanoplasticsIngestionNeurotoxicityCytotoxicityMytilus galloprovincialisLC50Concerns about plastic pollution and its toxicity towards animals and people are growing. Polystyrene (PS) is a plastic polymer highly produced in Europe for packaging purposes and building insulation amongst others. Whatever their source—illegal dumping, improper waste management, or a lack of treatment for the removal of plastic debris from wastewater treatment plants—PS products ultimately end up in the marine environment. Nanoplastics (<1000 nm) are the new focus for plastic pollution, gaining broad interest. Whether primary or secondary, their small size permits nanoparticles to cross cellular boundaries, consequently leading to adverse toxic effects. An in vitro assay of Mytilus galloprovincialis haemocytes exposed to 10 μg/L of polystyrene nanoplastics (PS-NPs; 50 nm) for 24 h was used to test cellular viability along with the luminescence inhibition (LC50) of Aliivibrio fischeri bacteria to evaluate acute toxicity. Cellular viability of mussel haemocytes decreased significantly after a 24 h exposure and PS-NPs LC50 range from 180 to 217, μg/L. In addition, a 28-day exposure of the marine bivalve M. galloprovincialis to PS-NPs (10 μg/L; 50 nm) was performed to evaluate the neurotoxic effects and the uptake of these plastic particles in three bivalve tissues (gills, digestive gland, and gonads). The ingestion of PS-NPs was time- and tissue-specific, suggesting that PS-NPs are ingested through the gills and then translocated through the mussel bloodstream, to the digestive gland and gonads where the highest amount of ingested PS-NPs was reported. Ingested PS-NPs may compromise the digestive glands’ key metabolic function and impair mussels’ gametogenic and reproductive success. Data on acetylcholinesterase inhibition and those previously obtained on a wide range of cellular biomarkers were elaborated through weighted criteria providing a synthetic assessment of cellular hazard from PS-NPs.ElsevierSapientiaGonçalves, Joanna M.Benedetti, M.d’Errico, G.Regoli, F.Bebianno, Maria J.20232025-09-01T00:00:00Z2023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/19928eng10.1016/j.envpol.2023.122104info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-29T10:43:40Zoai:sapientia.ualg.pt:10400.1/19928Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-29T10:43:40Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis |
title |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis |
spellingShingle |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis Gonçalves, Joanna M. Polystyrene nanoplastics Ingestion Neurotoxicity Cytotoxicity Mytilus galloprovincialis LC50 |
title_short |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis |
title_full |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis |
title_fullStr |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis |
title_full_unstemmed |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis |
title_sort |
Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis |
author |
Gonçalves, Joanna M. |
author_facet |
Gonçalves, Joanna M. Benedetti, M. d’Errico, G. Regoli, F. Bebianno, Maria J. |
author_role |
author |
author2 |
Benedetti, M. d’Errico, G. Regoli, F. Bebianno, Maria J. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Gonçalves, Joanna M. Benedetti, M. d’Errico, G. Regoli, F. Bebianno, Maria J. |
dc.subject.por.fl_str_mv |
Polystyrene nanoplastics Ingestion Neurotoxicity Cytotoxicity Mytilus galloprovincialis LC50 |
topic |
Polystyrene nanoplastics Ingestion Neurotoxicity Cytotoxicity Mytilus galloprovincialis LC50 |
description |
Concerns about plastic pollution and its toxicity towards animals and people are growing. Polystyrene (PS) is a plastic polymer highly produced in Europe for packaging purposes and building insulation amongst others. Whatever their source—illegal dumping, improper waste management, or a lack of treatment for the removal of plastic debris from wastewater treatment plants—PS products ultimately end up in the marine environment. Nanoplastics (<1000 nm) are the new focus for plastic pollution, gaining broad interest. Whether primary or secondary, their small size permits nanoparticles to cross cellular boundaries, consequently leading to adverse toxic effects. An in vitro assay of Mytilus galloprovincialis haemocytes exposed to 10 μg/L of polystyrene nanoplastics (PS-NPs; 50 nm) for 24 h was used to test cellular viability along with the luminescence inhibition (LC50) of Aliivibrio fischeri bacteria to evaluate acute toxicity. Cellular viability of mussel haemocytes decreased significantly after a 24 h exposure and PS-NPs LC50 range from 180 to 217, μg/L. In addition, a 28-day exposure of the marine bivalve M. galloprovincialis to PS-NPs (10 μg/L; 50 nm) was performed to evaluate the neurotoxic effects and the uptake of these plastic particles in three bivalve tissues (gills, digestive gland, and gonads). The ingestion of PS-NPs was time- and tissue-specific, suggesting that PS-NPs are ingested through the gills and then translocated through the mussel bloodstream, to the digestive gland and gonads where the highest amount of ingested PS-NPs was reported. Ingested PS-NPs may compromise the digestive glands’ key metabolic function and impair mussels’ gametogenic and reproductive success. Data on acetylcholinesterase inhibition and those previously obtained on a wide range of cellular biomarkers were elaborated through weighted criteria providing a synthetic assessment of cellular hazard from PS-NPs. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z 2025-09-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/19928 |
url |
http://hdl.handle.net/10400.1/19928 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.envpol.2023.122104 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549797377179648 |