Vietoris' number sequence and its generalizations through hypercomplex function theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/62819 |
Resumo: | The so-called Vietoris' number sequence is a sequence of rational numbers that appeared for the first time in a celebrated theorem by Vietoris (1958) about the positivity of certain trigonometric sums with important applications in harmonic analysis (Askey/Steinig, 1974) and in the theory of stable holomorphic functions (Ruscheweyh/ Salinas, 2004). In the context of hypercomplex function theory those numbers appear as coefficients of special homogeneous polynomials in R^3 whose generalization to an arbitrary dimension n lead to a n-parameter generalized Vietoris' number sequence that characterizes hypercomplex Appell polynomials in R^n. |
id |
RCAP_728ed0c3161f1d05bc6ce76351a39fb4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/62819 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Vietoris' number sequence and its generalizations through hypercomplex function theoryVietoris' number sequenceMonogenic Appell polynomialsGenerating functionsCiências Naturais::MatemáticasThe so-called Vietoris' number sequence is a sequence of rational numbers that appeared for the first time in a celebrated theorem by Vietoris (1958) about the positivity of certain trigonometric sums with important applications in harmonic analysis (Askey/Steinig, 1974) and in the theory of stable holomorphic functions (Ruscheweyh/ Salinas, 2004). In the context of hypercomplex function theory those numbers appear as coefficients of special homogeneous polynomials in R^3 whose generalization to an arbitrary dimension n lead to a n-parameter generalized Vietoris' number sequence that characterizes hypercomplex Appell polynomials in R^n.The work of the second author was supported by Portuguese funds through the CMAT - Centre of Mathematics and FCT within the Project UID/MAT/00013/2013. The work of the other authors was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), within project PEst-OE/MAT/UI4106/2013.Universidade do MinhoCação, IsabelFalcão, M. I.Malonek, Helmuth R.20182018-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/62819enghttp://elibrary.matf.bg.ac.rs/handle/123456789/4699info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:51:40Zoai:repositorium.sdum.uminho.pt:1822/62819Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:51:40Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Vietoris' number sequence and its generalizations through hypercomplex function theory |
title |
Vietoris' number sequence and its generalizations through hypercomplex function theory |
spellingShingle |
Vietoris' number sequence and its generalizations through hypercomplex function theory Cação, Isabel Vietoris' number sequence Monogenic Appell polynomials Generating functions Ciências Naturais::Matemáticas |
title_short |
Vietoris' number sequence and its generalizations through hypercomplex function theory |
title_full |
Vietoris' number sequence and its generalizations through hypercomplex function theory |
title_fullStr |
Vietoris' number sequence and its generalizations through hypercomplex function theory |
title_full_unstemmed |
Vietoris' number sequence and its generalizations through hypercomplex function theory |
title_sort |
Vietoris' number sequence and its generalizations through hypercomplex function theory |
author |
Cação, Isabel |
author_facet |
Cação, Isabel Falcão, M. I. Malonek, Helmuth R. |
author_role |
author |
author2 |
Falcão, M. I. Malonek, Helmuth R. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cação, Isabel Falcão, M. I. Malonek, Helmuth R. |
dc.subject.por.fl_str_mv |
Vietoris' number sequence Monogenic Appell polynomials Generating functions Ciências Naturais::Matemáticas |
topic |
Vietoris' number sequence Monogenic Appell polynomials Generating functions Ciências Naturais::Matemáticas |
description |
The so-called Vietoris' number sequence is a sequence of rational numbers that appeared for the first time in a celebrated theorem by Vietoris (1958) about the positivity of certain trigonometric sums with important applications in harmonic analysis (Askey/Steinig, 1974) and in the theory of stable holomorphic functions (Ruscheweyh/ Salinas, 2004). In the context of hypercomplex function theory those numbers appear as coefficients of special homogeneous polynomials in R^3 whose generalization to an arbitrary dimension n lead to a n-parameter generalized Vietoris' number sequence that characterizes hypercomplex Appell polynomials in R^n. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/62819 |
url |
https://hdl.handle.net/1822/62819 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://elibrary.matf.bg.ac.rs/handle/123456789/4699 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544440936398848 |