On generalized Vietoris’ number sequences

Detalhes bibliográficos
Autor(a) principal: Cação, Isabel
Data de Publicação: 2019
Outros Autores: Falcão, M. I., Malonek, Helmuth R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/62821
Resumo: Recently, by using methods of hypercomplex function theory, the authors have shown that a certain sequence S of rational numbers (Vietoris’ sequence) combines seemingly disperse subjects in real, complex and hypercomplex analysis. This sequence appeared for the first time in a theorem by Vietoris (1958) with important applications in harmonic analysis (Askey/Steinig, 1974) and in the theory of stable holomorphic functions (Ruscheweyh/Salinas, 2004). A non-standard application of Clifford algebra tools for defining Clifford-holomorphic sequences of Appell polynomials was the hypercomplex context in which a one-parametric generalization S(n),n≥1, of S (corresponding to n=2) surprisingly showed up. Without relying on hypercomplex methods this paper demonstrates how purely real methods also lead to S(n). For arbitrary n≥1 the generating function is determined and for n=2 a particular case of a recurrence relation similar to that known for Catalan numbers is proved.
id RCAP_f79d262f96280fb1af54f585d0a5a6d7
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/62821
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On generalized Vietoris’ number sequencesGenerating functionHypercomplex Appell polynomialsRecurrence relationVietoris’ number sequenceCiências Naturais::MatemáticasScience & TechnologyRecently, by using methods of hypercomplex function theory, the authors have shown that a certain sequence S of rational numbers (Vietoris’ sequence) combines seemingly disperse subjects in real, complex and hypercomplex analysis. This sequence appeared for the first time in a theorem by Vietoris (1958) with important applications in harmonic analysis (Askey/Steinig, 1974) and in the theory of stable holomorphic functions (Ruscheweyh/Salinas, 2004). A non-standard application of Clifford algebra tools for defining Clifford-holomorphic sequences of Appell polynomials was the hypercomplex context in which a one-parametric generalization S(n),n≥1, of S (corresponding to n=2) surprisingly showed up. Without relying on hypercomplex methods this paper demonstrates how purely real methods also lead to S(n). For arbitrary n≥1 the generating function is determined and for n=2 a particular case of a recurrence relation similar to that known for Catalan numbers is proved.The work of the first and third authors was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), within project PEst-OE/MAT/UI4106/2013. The work of the second author was supported by Portuguese funds through the CMAT - Centre of Mathematics and FCTwithin the Project UID/MAT/00013/2013Elsevier B.V.Universidade do MinhoCação, IsabelFalcão, M. I.Malonek, Helmuth R.2019-09-302019-09-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/62821eng0166-218X10.1016/j.dam.2018.10.017https://doi.org/10.1016/j.dam.2018.10.017info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-16T01:25:31Zoai:repositorium.sdum.uminho.pt:1822/62821Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-16T01:25:31Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On generalized Vietoris’ number sequences
title On generalized Vietoris’ number sequences
spellingShingle On generalized Vietoris’ number sequences
Cação, Isabel
Generating function
Hypercomplex Appell polynomials
Recurrence relation
Vietoris’ number sequence
Ciências Naturais::Matemáticas
Science & Technology
title_short On generalized Vietoris’ number sequences
title_full On generalized Vietoris’ number sequences
title_fullStr On generalized Vietoris’ number sequences
title_full_unstemmed On generalized Vietoris’ number sequences
title_sort On generalized Vietoris’ number sequences
author Cação, Isabel
author_facet Cação, Isabel
Falcão, M. I.
Malonek, Helmuth R.
author_role author
author2 Falcão, M. I.
Malonek, Helmuth R.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cação, Isabel
Falcão, M. I.
Malonek, Helmuth R.
dc.subject.por.fl_str_mv Generating function
Hypercomplex Appell polynomials
Recurrence relation
Vietoris’ number sequence
Ciências Naturais::Matemáticas
Science & Technology
topic Generating function
Hypercomplex Appell polynomials
Recurrence relation
Vietoris’ number sequence
Ciências Naturais::Matemáticas
Science & Technology
description Recently, by using methods of hypercomplex function theory, the authors have shown that a certain sequence S of rational numbers (Vietoris’ sequence) combines seemingly disperse subjects in real, complex and hypercomplex analysis. This sequence appeared for the first time in a theorem by Vietoris (1958) with important applications in harmonic analysis (Askey/Steinig, 1974) and in the theory of stable holomorphic functions (Ruscheweyh/Salinas, 2004). A non-standard application of Clifford algebra tools for defining Clifford-holomorphic sequences of Appell polynomials was the hypercomplex context in which a one-parametric generalization S(n),n≥1, of S (corresponding to n=2) surprisingly showed up. Without relying on hypercomplex methods this paper demonstrates how purely real methods also lead to S(n). For arbitrary n≥1 the generating function is determined and for n=2 a particular case of a recurrence relation similar to that known for Catalan numbers is proved.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-30
2019-09-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/62821
url https://hdl.handle.net/1822/62821
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0166-218X
10.1016/j.dam.2018.10.017
https://doi.org/10.1016/j.dam.2018.10.017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544446001020928