Detection of distributed denial of service attacks at source
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/27819 |
Resumo: | From year to year new records of the amount of traffic in an attack are established, which demonstrate not only the constant presence of distributed denialof-service attacks, but also its evolution, demarcating itself from the other network threats. The increasing importance of resource availability alongside the security debate on network devices and infrastructures is continuous, given the preponderant role in both the home and corporate domains. In the face of the constant threat, the latest network security systems have been applying pattern recognition techniques to infer, detect, and react more quickly and assertively. This dissertation proposes methodologies to infer network activities patterns, based on their traffic: follows a behavior previously defined as normal, or if there are deviations that raise suspicions about the normality of the action in the network. It seems that the future of network defense systems continues in this direction, not only by increasing amount of traffic, but also by the diversity of actions, services and entities that reflect different patterns, thus contributing to the detection of anomalous activities on the network. The methodologies propose the collection of metadata, up to the transport layer of the osi model, which will then be processed by the machien learning algorithms in order to classify the underlying action. Intending to contribute beyond denial-of-service attacks and the network domain, the methodologies were described in a generic way, in order to be applied in other scenarios of greater or less complexity. The third chapter presents a proof of concept with attack vectors that marked the history and a few evaluation metrics that allows to compare the different classifiers as to their success rate, given the various activities in the network and inherent dynamics. The various tests show flexibility, speed and accuracy of the various classification algorithms, setting the bar between 90 and 99 percent. |
id |
RCAP_72c50df3b741fcafecd91ef0672c9032 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/27819 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detection of distributed denial of service attacks at sourcePatterns recognitionDynamics analyzesNetwork activity modelingMethodologies for anomalies detectionNetwork activity classificationFrom year to year new records of the amount of traffic in an attack are established, which demonstrate not only the constant presence of distributed denialof-service attacks, but also its evolution, demarcating itself from the other network threats. The increasing importance of resource availability alongside the security debate on network devices and infrastructures is continuous, given the preponderant role in both the home and corporate domains. In the face of the constant threat, the latest network security systems have been applying pattern recognition techniques to infer, detect, and react more quickly and assertively. This dissertation proposes methodologies to infer network activities patterns, based on their traffic: follows a behavior previously defined as normal, or if there are deviations that raise suspicions about the normality of the action in the network. It seems that the future of network defense systems continues in this direction, not only by increasing amount of traffic, but also by the diversity of actions, services and entities that reflect different patterns, thus contributing to the detection of anomalous activities on the network. The methodologies propose the collection of metadata, up to the transport layer of the osi model, which will then be processed by the machien learning algorithms in order to classify the underlying action. Intending to contribute beyond denial-of-service attacks and the network domain, the methodologies were described in a generic way, in order to be applied in other scenarios of greater or less complexity. The third chapter presents a proof of concept with attack vectors that marked the history and a few evaluation metrics that allows to compare the different classifiers as to their success rate, given the various activities in the network and inherent dynamics. The various tests show flexibility, speed and accuracy of the various classification algorithms, setting the bar between 90 and 99 percent.De ano para ano são estabelecidos novos recordes de quantidade de tráfego num ataque, que demonstram não só a presença constante de ataques de negação de serviço distribuídos, como também a sua evolução, demarcando-se das outras ameaças de rede. A crescente importância da disponibilidade de recursos a par do debate sobre a segurança nos dispositivos e infraestruturas de rede é contínuo, dado o papel preponderante tanto no dominio doméstico como no corporativo. Face à constante ameaça, os sistemas de segurança de rede mais recentes têm vindo a aplicar técnicas de reconhecimento de padrões para inferir, detetar e reagir de forma mais rápida e assertiva. Esta dissertação propõe metodologias para inferir padrões de atividades na rede, tendo por base o seu tráfego: se segue um comportamento previamente definido como normal, ou se existem desvios que levantam suspeitas sobre normalidade da ação na rede. Tudo indica que o futuro dos sistemas de defesa de rede continuará neste sentido, servindo-se não só do crescente aumento da quantidade de tráfego, como também da diversidade de ações, serviços e entidades que refletem padrões distintos contribuindo assim para a deteção de atividades anómalas na rede. As metodologias propõem a recolha de metadados, até á camada de transporte, que seguidamente serão processados pelos algoritmos de aprendizagem automática com o objectivo de classificar a ação subjacente. Pretendendo que o contributo fosse além dos ataques de negação de serviço e do dominio de rede, as metodologias foram descritas de forma tendencialmente genérica, de forma a serem aplicadas noutros cenários de maior ou menos complexidade. No quarto capítulo é apresentada uma prova de conceito com vetores de ataques que marcaram a história e, algumas métricas de avaliação que permitem comparar os diferentes classificadores quanto à sua taxa de sucesso, face às várias atividades na rede e inerentes dinâmicas. Os vários testes mostram flexibilidade, rapidez e precisão dos vários algoritmos de classificação, estabelecendo a fasquia entre os 90 e os 99 por cento.2020-03-05T18:09:13Z2018-01-01T00:00:00Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/27819TID:202234142engSilva, Fábio Alexandre Henriques dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:53:58Zoai:ria.ua.pt:10773/27819Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:33.457329Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detection of distributed denial of service attacks at source |
title |
Detection of distributed denial of service attacks at source |
spellingShingle |
Detection of distributed denial of service attacks at source Silva, Fábio Alexandre Henriques da Patterns recognition Dynamics analyzes Network activity modeling Methodologies for anomalies detection Network activity classification |
title_short |
Detection of distributed denial of service attacks at source |
title_full |
Detection of distributed denial of service attacks at source |
title_fullStr |
Detection of distributed denial of service attacks at source |
title_full_unstemmed |
Detection of distributed denial of service attacks at source |
title_sort |
Detection of distributed denial of service attacks at source |
author |
Silva, Fábio Alexandre Henriques da |
author_facet |
Silva, Fábio Alexandre Henriques da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Fábio Alexandre Henriques da |
dc.subject.por.fl_str_mv |
Patterns recognition Dynamics analyzes Network activity modeling Methodologies for anomalies detection Network activity classification |
topic |
Patterns recognition Dynamics analyzes Network activity modeling Methodologies for anomalies detection Network activity classification |
description |
From year to year new records of the amount of traffic in an attack are established, which demonstrate not only the constant presence of distributed denialof-service attacks, but also its evolution, demarcating itself from the other network threats. The increasing importance of resource availability alongside the security debate on network devices and infrastructures is continuous, given the preponderant role in both the home and corporate domains. In the face of the constant threat, the latest network security systems have been applying pattern recognition techniques to infer, detect, and react more quickly and assertively. This dissertation proposes methodologies to infer network activities patterns, based on their traffic: follows a behavior previously defined as normal, or if there are deviations that raise suspicions about the normality of the action in the network. It seems that the future of network defense systems continues in this direction, not only by increasing amount of traffic, but also by the diversity of actions, services and entities that reflect different patterns, thus contributing to the detection of anomalous activities on the network. The methodologies propose the collection of metadata, up to the transport layer of the osi model, which will then be processed by the machien learning algorithms in order to classify the underlying action. Intending to contribute beyond denial-of-service attacks and the network domain, the methodologies were described in a generic way, in order to be applied in other scenarios of greater or less complexity. The third chapter presents a proof of concept with attack vectors that marked the history and a few evaluation metrics that allows to compare the different classifiers as to their success rate, given the various activities in the network and inherent dynamics. The various tests show flexibility, speed and accuracy of the various classification algorithms, setting the bar between 90 and 99 percent. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01T00:00:00Z 2018 2020-03-05T18:09:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/27819 TID:202234142 |
url |
http://hdl.handle.net/10773/27819 |
identifier_str_mv |
TID:202234142 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137661056712704 |