Cut-elimination and a permutation-free sequent calculus for intuitionistic logic
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/3829 |
Resumo: | We describe a sequent calculus, based on work of Herbelin's, of which the cut-free derivations are in 1-1 correspondence with normal natural deduction proofs of intuitionistic logic. We present a simple proof of Herbelin's strong cut-elimination theorem for the calculus, using the recursive path oredering theorem of Dershowitz. |
id |
RCAP_73bd796aa6af9233f28ff7e027c65e06 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/3829 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logicCut-eliminationNormalisationNatural deductionIntuitionistic logicRecursive path orderingTerminationWe describe a sequent calculus, based on work of Herbelin's, of which the cut-free derivations are in 1-1 correspondence with normal natural deduction proofs of intuitionistic logic. We present a simple proof of Herbelin's strong cut-elimination theorem for the calculus, using the recursive path oredering theorem of Dershowitz.Junta Nacional de Investigação Científica e Tecnológica (JNICT).União Europeia (UE) - Programa ESPRIT - grant BRA 7232 GENTZEN.KluwerUniversidade do MinhoPinto, Luís F.Dyckhoff, Roy19981998-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/postscriptapplication/pdfhttp://hdl.handle.net/1822/3829eng"Studia Logica". ISSN 0039-3215. 60:1 (1998) 107-118.0039-321510.1023/A:1005099619660http://www.springerlink.com/(hborbcz2q3bo25n4fjvrsj55)/app/home/contribution.asp?referrer=parent&backto=issue,5,8;journal,63,69;linkingpublicationresults,1:100340,1info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T07:34:30Zoai:repositorium.sdum.uminho.pt:1822/3829Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T07:34:30Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logic |
title |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logic |
spellingShingle |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logic Pinto, Luís F. Cut-elimination Normalisation Natural deduction Intuitionistic logic Recursive path ordering Termination |
title_short |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logic |
title_full |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logic |
title_fullStr |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logic |
title_full_unstemmed |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logic |
title_sort |
Cut-elimination and a permutation-free sequent calculus for intuitionistic logic |
author |
Pinto, Luís F. |
author_facet |
Pinto, Luís F. Dyckhoff, Roy |
author_role |
author |
author2 |
Dyckhoff, Roy |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Pinto, Luís F. Dyckhoff, Roy |
dc.subject.por.fl_str_mv |
Cut-elimination Normalisation Natural deduction Intuitionistic logic Recursive path ordering Termination |
topic |
Cut-elimination Normalisation Natural deduction Intuitionistic logic Recursive path ordering Termination |
description |
We describe a sequent calculus, based on work of Herbelin's, of which the cut-free derivations are in 1-1 correspondence with normal natural deduction proofs of intuitionistic logic. We present a simple proof of Herbelin's strong cut-elimination theorem for the calculus, using the recursive path oredering theorem of Dershowitz. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998 1998-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/3829 |
url |
http://hdl.handle.net/1822/3829 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Studia Logica". ISSN 0039-3215. 60:1 (1998) 107-118. 0039-3215 10.1023/A:1005099619660 http://www.springerlink.com/(hborbcz2q3bo25n4fjvrsj55)/app/home/contribution.asp?referrer=parent&backto=issue,5,8;journal,63,69;linkingpublicationresults,1:100340,1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/postscript application/pdf |
dc.publisher.none.fl_str_mv |
Kluwer |
publisher.none.fl_str_mv |
Kluwer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545364780089344 |