Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Leandro dos Santos
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/33333
Resumo: Colloidal gels represent one of the most promising classes of biomaterials for biomedical applications owing to their potential for exploring different nanoparticle combinations towards the assembly of macro-scale multi-particle platforms. In these systems, nanosized units can serve both as crosslinking nodes and as structural building blocks resulting in highly hierarchic networks. Typically, these nanostructured systems leverage intrinsic supramolecular interactions for self-assembling. The resulting constructs present highly attractive physicochemical properties, such as viscoelasticity, self-healing and shear-thinning features and may present injectability and fit-to-shape features. Despite the inherent potential of colloidal gels, their exploitation as inks for additive manufacturing, namely 3D printing, is still limited and largely unexplored. In fact, most of the current developed colloidal systems are single-network assembled via weak particle-particle supramolecular interactions (such as Van der Waals, electrostatic, etc.), not providing sufficient mechanical stability to 3D printed constructs, which often exhibit a low structural lifetime. To overcome these limitations, this master dissertation focused on the development of a 3D-printable double-network colloidal ink with refined programable, modular and inherent cell supporting features. For this, two oppositely charged unitary nanoparticle building-blocks that also exhibited light-responsiveness were initially combined via electrostatic-driven bottom-up assembly, resulting in the formulation of a colloidal ink with suitable rheological properties to be processed via extrusion 3D printing. The presence of light-responsive chemical moieties in nanoparticles enabled the production of double network (i.e., electrostatic and covalent) constructs exhibiting mechanical robustness after light induced in situ photocrosslinking. The resulting constructs were biocompatible and exhibited adhesive properties for enabling human adipose derived mesenchymal stems adhesion, promoting cell spreading and proliferation, for more than 14 days. These findings support the future use of these systems as cell bioinstructive platforms and as highly modular and processable inks for 3D printing of nanoparticle only constructs that may find numerous biomedical applications.
id RCAP_743254a3457de3c066861bb5a0db8266
oai_identifier_str oai:ria.ua.pt:10773/33333
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineeringNanoparticlesColloidal gel inksDouble networks3D printingTissue engineeringColloidal gels represent one of the most promising classes of biomaterials for biomedical applications owing to their potential for exploring different nanoparticle combinations towards the assembly of macro-scale multi-particle platforms. In these systems, nanosized units can serve both as crosslinking nodes and as structural building blocks resulting in highly hierarchic networks. Typically, these nanostructured systems leverage intrinsic supramolecular interactions for self-assembling. The resulting constructs present highly attractive physicochemical properties, such as viscoelasticity, self-healing and shear-thinning features and may present injectability and fit-to-shape features. Despite the inherent potential of colloidal gels, their exploitation as inks for additive manufacturing, namely 3D printing, is still limited and largely unexplored. In fact, most of the current developed colloidal systems are single-network assembled via weak particle-particle supramolecular interactions (such as Van der Waals, electrostatic, etc.), not providing sufficient mechanical stability to 3D printed constructs, which often exhibit a low structural lifetime. To overcome these limitations, this master dissertation focused on the development of a 3D-printable double-network colloidal ink with refined programable, modular and inherent cell supporting features. For this, two oppositely charged unitary nanoparticle building-blocks that also exhibited light-responsiveness were initially combined via electrostatic-driven bottom-up assembly, resulting in the formulation of a colloidal ink with suitable rheological properties to be processed via extrusion 3D printing. The presence of light-responsive chemical moieties in nanoparticles enabled the production of double network (i.e., electrostatic and covalent) constructs exhibiting mechanical robustness after light induced in situ photocrosslinking. The resulting constructs were biocompatible and exhibited adhesive properties for enabling human adipose derived mesenchymal stems adhesion, promoting cell spreading and proliferation, for more than 14 days. These findings support the future use of these systems as cell bioinstructive platforms and as highly modular and processable inks for 3D printing of nanoparticle only constructs that may find numerous biomedical applications.Os géis coloidais representam uma das classes de biomateriais mais promissoras para aplicações biomédicas devido à possibilidade de explorar diferentes combinações de nanopartículas tendo em vista a formulação de plataformas macroscópicas multi-partículadas. Nestes sistemas, as unidades nanométricas podem servir tanto como pontos de reticulação ou blocos estruturais, sendo que a sua combinação pode resultar na formação redes altamente hierárquicas. Tipicamente, estes sistemas nano-estruturados tiram partido de interações supramoleculares intrínsecas para promover a agregação das nanopartículas. As plataformas resultantes apresentam propriedades físico-químicas altamente atrativas, como viscoelasticidade, características de auto-regeneração e de diminuição da sua viscosidade aquando da aplicação de uma força, podendo também apresentar injetabilidade e ajuste a qualquer forma. Apesar do potencial inerente aos géis coloidais, a sua utilização como tintas para manufatura aditiva, nomeadamente impressão 3D, ainda é limitada e amplamente inexplorada. De facto, a maioria dos sistemas coloidais atualmente desenvolvidos são combinados numa rede única via interações supramoleculares fracas partícula-partícula (e.g., forças de Van der Waals, eletrostáticas, etc.), não fornecendo estabilidade mecânica suficiente às construções impressas em 3D, que exibem frequentemente problemas estruturais pós-impressão. Tendo em vista melhoramentos nesta tecnologia, esta dissertação de mestrado focou o desenvolvimento de uma tinta coloidal modular e de dupla rede que apresenta características para o suporte de células em cultura e possibilidade de processamento via impressão 3D. Para tal, duas classes de nanopartículas com cargas opostas e com responsividade à luz foram inicialmente combinadas, resultando na formação de uma tinta coloidal com propriedades reológicas favoráveis ao seu processamento via impressão 3D. A presença de grupos químicos responsivos à luz, possibilitaram a formulação de tintas de dupla rede (e.g., eletrostática e covalente) exibindo robustez mecânica após foto-reticulação induzida por luz. As construções resultantes apresentaram biocompatibilidade e exibiram propriedades adesivas para células estaminais derivadas de adipócitos humanos, promovendo a propagação proliferação celular por mais de 14 dias. Estas descobertas suportam o futuro uso destes sistemas como plataformas bioinstrutivas e como tintas altamente modulares e processáveis por impressão 3D, podendo assim originar plataformas formadas unicamente por nanopartículas, podendo assim contribuir para diversas aplicações biomédicas.2023-12-20T00:00:00Z2021-12-15T00:00:00Z2021-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33333engGonçalves, Leandro dos Santosinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:04:05Zoai:ria.ua.pt:10773/33333Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:46.075604Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering
title Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering
spellingShingle Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering
Gonçalves, Leandro dos Santos
Nanoparticles
Colloidal gel inks
Double networks
3D printing
Tissue engineering
title_short Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering
title_full Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering
title_fullStr Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering
title_full_unstemmed Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering
title_sort Multi-functional colloidal gels as cell bioinstructive platforms for tissue engineering
author Gonçalves, Leandro dos Santos
author_facet Gonçalves, Leandro dos Santos
author_role author
dc.contributor.author.fl_str_mv Gonçalves, Leandro dos Santos
dc.subject.por.fl_str_mv Nanoparticles
Colloidal gel inks
Double networks
3D printing
Tissue engineering
topic Nanoparticles
Colloidal gel inks
Double networks
3D printing
Tissue engineering
description Colloidal gels represent one of the most promising classes of biomaterials for biomedical applications owing to their potential for exploring different nanoparticle combinations towards the assembly of macro-scale multi-particle platforms. In these systems, nanosized units can serve both as crosslinking nodes and as structural building blocks resulting in highly hierarchic networks. Typically, these nanostructured systems leverage intrinsic supramolecular interactions for self-assembling. The resulting constructs present highly attractive physicochemical properties, such as viscoelasticity, self-healing and shear-thinning features and may present injectability and fit-to-shape features. Despite the inherent potential of colloidal gels, their exploitation as inks for additive manufacturing, namely 3D printing, is still limited and largely unexplored. In fact, most of the current developed colloidal systems are single-network assembled via weak particle-particle supramolecular interactions (such as Van der Waals, electrostatic, etc.), not providing sufficient mechanical stability to 3D printed constructs, which often exhibit a low structural lifetime. To overcome these limitations, this master dissertation focused on the development of a 3D-printable double-network colloidal ink with refined programable, modular and inherent cell supporting features. For this, two oppositely charged unitary nanoparticle building-blocks that also exhibited light-responsiveness were initially combined via electrostatic-driven bottom-up assembly, resulting in the formulation of a colloidal ink with suitable rheological properties to be processed via extrusion 3D printing. The presence of light-responsive chemical moieties in nanoparticles enabled the production of double network (i.e., electrostatic and covalent) constructs exhibiting mechanical robustness after light induced in situ photocrosslinking. The resulting constructs were biocompatible and exhibited adhesive properties for enabling human adipose derived mesenchymal stems adhesion, promoting cell spreading and proliferation, for more than 14 days. These findings support the future use of these systems as cell bioinstructive platforms and as highly modular and processable inks for 3D printing of nanoparticle only constructs that may find numerous biomedical applications.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-15T00:00:00Z
2021-12-15
2023-12-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33333
url http://hdl.handle.net/10773/33333
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137702679937024